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Chapter l. Quarks, leptons and forces 
 
The fundamental particles of matter are quarks and leptons. They can be arranged in 
three families or generations according to the following scheme: 
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The electric charge is given in units of the fundamental unit charge e = 1,602·10–19 C. 
 
The quarks are denoted by letters being a short for their names u = up, d = down, c =  
charm, s = strange, t = top, b = bottom.’ 
 
The leptons in the bottom line are the electron, the muon and the tauon. The leptons 
in the previous line are the corresponding neutrinos. In the standard model that we 
present here they have mass zero. 
 
For every particle in the scheme there is a corresponding antiparticle that is usually 
denoted by a bar over the letter, for instance anti-u is denoted  u and has opposite 
electric charge. The antiparticle of the electron, e+, is the positron, the antimuon and 
antitauon are µ+ and τ+ respectively. There are also corresponding antineutrinos. 
 
All these particles have spin 1/2 and are fermions, which means that they follow the 
Pauli principle: Two identical particles cannot be in the same state. 
 
The quarks can, via the weak interaction, be converted into each other within the 
family and, with smaller probability also between the families. Only the first family of 
quarks is thus stable. The leptons cannot be converted between the families in the 
model we present. 
 
The quarks do not exist as free particles; they are always bound to each other, either 
in pairs of quark-anti-quark (mesons) or in triplets of quark-quark-quark (baryons), 
alternatively anti-quark-anti-quark-anti-quark (antibaryons). These quark 
combinations  will always have integer charge. 
   
Quark-antiquark pairs have integer spin (0, 1, 2...) and are bosons (they do not obey 
the Pauli principle) while the triplet combinations have half-integer spin (1/2, 3/2, 
5/ 2...) and are fermions. Mesons and baryons have a common name; they are hadrons 
(they interact strongly). 
 
The tables below show the quark content of some hadrons 
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Spin 0 mesons      Spin 1 mesons 

  

Hadron Quark content Charge

π + ud +1
π − du −1

π 0 ,η ,η ' uu ,dd ,ss 0
K0 ds 0
K0 sd 0
K+ us +1
K− su −1

  

Hadron Quark content Charge

ρ + ud +1
ρ− du −1

ρ 0 ,ω ,φ uu ,dd ,ss 0
K *0 ds 0
K *0 sd 0
K *+ us +1
K *− su −1

 

 
Spin 1/2 baryons       Spin 3/2 baryons 

  

Hadron Quark content Charge
n udd 0
p uud +1

Σ + uu ,dd ,ss +1
Σ 0 ,Λ0 uds 0
Σ − dds −1
Ξ − dss −1
Ξ 0 uss 0

  

Hadron Quark content Charge

Δ− ddd −1
Δ0 udd 0
Δ+ uud +1
Δ++ uuu +2
Σ *− dds −1
Σ *0 uds 0
Σ *+ uus +1
Ξ *− dss −1
Ξ *0 uss 0
Ω− sss −1

 

 
Most of these hadrons are unstable and decay into particles with smaller mass. A table 
at the end of this book shows the most common decay channels and the corresponding 
lifetimes. You will also find a corresponding table for the leptons. 
 
In Nature there are, as far as we know now, four fundamental forces: 
 

• Gravitation, which can normally be neglected in the micro cosmos. 
• The electromagnetic force that acts between all electrically charged particles. 
• The weak force that can convert between quarks and between leptons. The weak 

force is for instance responsible for β-decay in atomic nuclei. The weak force 
cannot change a lepton from one family to another (in this theory). On the 
other hand the weak force can, with a reduced probability, change quarks 
between the families. 

• The strong force, which only is felt by the quarks and then ignores the type of 
quark. It cannot, as the weak force, convert a quark into a different quark. It is 
the strong force that keeps the pairs and triplets of quarks together and also 
keeps the nucleons together in an atomic nucleus. 

 
In order that two particles will interact they have to know of the existence of each 
other. In all modern theories of interaction the force between two particles is due to 
the exchange of force particles that carries information between the interacting  
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particles. In the electromagnetic interaction this particle is the photon, γ, (massless, 
with no charge and with spin 1). In the weak interaction we have three force particles, 
vector bosons, W+, W– and Z0 (with masses of the order of 100 proton masses and spin 
1). In the strong interaction we have 8 gluons (massless, uncharged and with spin 1). 
In gravitation we have the graviton (uncharged, massless and with spin 2). You will 
find a table of the force particles at the end of this book. 
 
Repeat the sections on relativistic kinematics from earlier courses. Especially 
important are the definitions of (total) energy, momentum, invariants and applications 
of the theory on relativistic collisions and decays. Note that all masses that we use are 
rest masses. Repeat also earlier sections on quantum mechanics, especially the 
uncertainty relation. 
 
Review: 

• Write down the scheme for the quarks and leptons. Give the respective electric 
charges. Which particles can interact electromagnetically, weakly and 
strongly? 

•  Study the tables at the end of the book. Typical times in the weak decays are 
10–6–10–10 seconds, in an electromagnetic decay 10–16—10–20 seconds and in a 
strong decay < 10–20 seconds. Classify the different decays in the table with 
the help of this. 

• Check that the electric charges of the component quarks add up to the correct 
total charge of the hadrons in the tables. 

 
Problems: 
 
1. A π° meson decays at rest into two photons. This is an electromagnetic decay. 
Why? (Give several possible reasons). Compute the energies of the photons. 
Answer: 0.068 GeV. 
 
2. A K-meson decays at rest into π + and π –. Compute the energy and momenta of the 
π mesons. 
Answer: 0.249 GeV and 0.206 GeV/c. 
 
3. In 1974, the Ψ meson, the first particle that contains the charm quark c, was 
discovered that Ψ consists of a  cc  pair and has mass 3.1 GeV/c. It was observed 
when it decays into µ+µ− . What is the momentum of the muons and how far do they 
travel (in average, they are unstable and decay within a short time) if the Ψ meson 
decays at rest. 
Answer: p = 1.54 GeV/c; distance = 9.6 km. 
 
4. Two particles with masses m1 and m2 and the same momentum p move between to 
detectors that are placed at distance L from each other. 
a) Show that the difference in time of flight for the particles to move between the 
detectors is proportional to p–2 if the momentum p >> mc. 
b) Compute the least value that L can have if you would like to differ between a π  
mesonand a K meson with momentum 3 GeV/ c and the time of flight can be 
measured with a precision of 200 ps. The K-meson has mass 494 MeV/c, the π meson 
has mass 140 MeV / c2.  Answer: 5 m. 
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Chapter 2. Interactions 
 
Particles can interact with each other and particles can decay. A particle interaction 
can be written symbolically by for example 
  a+ b→ c + d + e  or  ab→ cde  
 
A decay can be written 
  a→ cd  
 
Examples: 
   π

−p→π 0n  
  π

+p→ K+Σ +  
  Σ

0 →Λ0γ  
  Σ + →π +n  
  µ

− → e−ν eνµ  
 
For all such reactions you have some rather simple conservation rules: 
 
1. The electric charge is always conserved. Check that this is the case for the reactions 
above! 
2. The quark number = (number of quarks - number of anti-quarks) is always 
conserved. This together with the fact that quarks can only group in quark—antiquark 
pairs and triplets (quarks or antiquarks) as given earlier, imply that baryon number is 
always conserved. Check all the reactions! 
3. The lepton number (number of leptons - number of anti-leptons) is conserved by 
family in all reactions. This means that you can only create or annihilate a lepton by at 
the same time creating / destroying an anti-lepton. Check the last reaction! 
4. Under strong and electromagnetic interaction the identity of a quark is not changed 
i.e. it cannot be changed into another kind of quark. However, this happens in the 
weak interaction. Look for example at the decay of Σ + where an s-quark is converted 
into a u-quark via the weak interaction. Check the quark content on both sides of the 
decay! 
5. In a decay via the weak interaction, the quarks are normally converted vertically in 
the scheme, alternatively in zigzag between the families as for example u ↔ s , 
 u ↔ d , the heavier quarks often decay in a cascade like  t → b→ c → s → u . This is 
because the force particles W have electric charge. 
6. The reaction must be allowed energetically. Thus for example a particle cannot 
decay into particles with a total mass larger than the mass of the parent particle. The 
reaction  p→ ne+ν e fulfils rules 1, 2, 3, 4, 5 (check!) but not 6 and this decay is not 
possible. 
7. If a photon is involved, the interaction is electromagnetic or is partly electro-
magnetic. 
8. In some cases a reaction can occur with several kinds of interaction (and sometimes 
in several ways with one interaction). We then choose the dominant reaction in 
priority strong, electromagnetic, and weak. The weak interaction thus is only chosen 
if strong and electromagnetic interaction is forbidden. 
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We can write a quark diagram in order to simplify the analysis. 
The first reaction above will look like 
  
           π −  π 0  
 
 
 
 

 n                        p  
 
 
You see that effectively a u-quark pair annihilates and a d-quark pair is created. This 
is a rather typical strong interaction reaction. 
 
The second reaction will be 
 
                    π +  K+  
 
 
 

Σ +                       p
 
 
In this reaction you annihilate a d-pair and create an s-pair and it is obviously a strong 
reaction. Both the particles in the final states have strangeness, the sigma has 
strangeness equal to  –1, the kaon (K-meson) has strangeness +1. This implies that via 
the strong interaction you have to produce pairs of opposite strangeness or that 
strangeness is conserved. This is also a strong reaction. 
 
The third reaction is 
 
                        γ  

                    Σ 0  Λ0  
 
 
and is obviously electromagnetic. This reaction would be difficult to see in for 
instance a bubble chamber, as all the particles are uncharged! 
 
The fourth reaction will be 
 
                Σ + n 
 

π +         
 
Here we convert an s-quark into a u-quark via weak interaction, besides we create a 
pair of d-quarks. 
 
The last reaction can be depicted as follows:  
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νµ                          
 

                      µ−  ν e  
 

 e−          
Note that we cannot destroy the “µ family” that survives as a µ neutrino. Also when 
creating an electron, a complementary member of the “electron family” has to be 
created. 
 
Review: 
Check that you understand and remember the conservation rules. 
 
Problems: 
 
1. Show by trying to draw quark diagrams for the reactions 

  π
−p→ K−Σ +  

  π
−p→π−Σ +  

that these reactions are very improbable. Why? 
 
2. Classify the following reactions in strong, electromagnetic and/or weak or not 
allowed. Then choose the dominant one. In some cases there is more than one 
solution possible. 
a)  π

−p→π−π +n  
b)  γ p→π +n  
c)  νµn → µ−p  

d)   π 0 → e+e−e+e−  
e)  νµp→ µ+n  

f)   pp →π−π +π 0  
g)   K

+n → K0p  
h) τ − →π −ντ  
i)  D− → K+π −π −     D

− = dc( )  

k)   Λ
0p→ K+pp  

 
3. Draw diagrams for the allowed reactions. 
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Chapter 3. Quantum electrodynamics (QED) 
 
We can represent a reaction process where for instance two electrons interact by a 
space-time diagram: 

    
The upper electron emits a photon that after a while is absorbed by the lower electron 
a certain time interval (between the grey lines) we have an intermediate state that 
strictly is not allowed by energy conservation but due to the uncertainty relation, can 
exist for a short time. We can express the quantum mechanical amplitude of this 
process by  

 
  
X ∝ −e( ) 1

En −Ei
−e( )  

where   Ei = e1 + e2  and   En = ′e1 + e2 + eγ  i.e.   En −Ei = ′e1 − e1 + eγ  
The factors (–e, the electron charge) come from the upper and lower vertex 
respectively and give the coupling strength, a measure of the probability that a photon 
is emitted and absorbed respectively. The factor in the middle gives the time that by 
the uncertainty relation allows the photon to exist. Ei and En are the energies of the 
initial and intermediate states respectively. 
 
The scattering process can also be described by the diagram 
 

  
with amplitude 

 
  
Y ∝ −e( ) 1

En
′ −Ei

+ −e( )  

where now   Ei = e1 + e2  and   En = e1 + ′e2 + eγ  i.e.   En −Ei = ′e2 − e2 + eγ = e1 − ′e1 + eγ , the 
last equality using the energy conservation   e1 + e2 = ′e1 + ′e2 . 
 
According to the rules of quantum mechanics we have, in order to get the reaction 
probability (or the cross-section), first to add these amplitudes and then take the 
modulus square of the sum. This gives 
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X +Y ∝ −e( ) 1

′e1 − e1 + eγ
+ 1

e1 − ′e1 + eγ

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
−e( ) = −e( ) 2eγ

eγ
2 − ′e1 − e1( )2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
−e( )  

 
The factor   2eγ  will disappear if we do a correct field theoretical calculation. We now 
put 
    eγ

2 = pλ
2c2 + mγ

2c4  
and get 

 

   
A = X +Y ∝ −e( ) 1

pλ
2c2 + mγ

2c4 − ′e1 − e1( )2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
−e( )∝ −e( ) 1

mγ
2c2 − P2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
−e( )  

where P is the four-momentum of the exchange photon i.e.   P = P1 − ′P1  with 

   
P1 =

e1

c
,p1

⎛
⎝⎜

⎞
⎠⎟

 and 
   
′P1 =

′e1

c
, ′p1

⎛
⎝⎜

⎞
⎠⎟

. Note that the denominator is a relativistically 

invariant expression. We have here given the exchange particle, the photon, a mass 

 mγ  in order to get a general result that can later be used also in the case when the 
exchanged particle is not massless. 
 
 We illustrate the result graphically by 

  
The last diagram where the exchanged particle goes vertically is thus the sum of the 
two time-ordered diagrams to the left. It turns out that we always get such pairs of 
amplitudes and that they always sum up to something “simple”. This means that we 
can always directly use the diagram to the right and via simple rules can translate the 
diagram into a mathematical expression. Below we will give these rules (and they will 
always work): 

 
• Every vertex in a diagram corresponds to a factor (–e) in the amplitude. 
• Every internal line (that describes a particle exchange) corresponds to a factor 

 
  

1
M2c2 − P2  

where P is the four-momentum and M the mass of the particle that corresponds to the 
internal line. 
 
It was Richard Feynman who introduced this graphical way of representing an 
interaction. Such diagrams are therefore often called Feynman diagrams. 
 
Note. In a complete theory also the external lines will contribute with certain factors 
(for instance describing the spin) that we neglect here. It is precisely some of these 
factors that cancel the factor   2eγ . In the calculations that we will make, those factors 
will not be essential. 
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We can now estimate the e–e– cross section by taking the modulus square of the 
summed amplitude above. As the result is relativistically invariant we can evaluate it 

in the centre of mass (COM) system where   ′e1 = e1 and 
   
′p1 −p1 = 2psinθ

2
, θ  being 

the scattering angle. Inserting this and putting   mγ = 0  we get 

 

  

dσ
dΩ

∝ A 2 ∝ e4

p4 sin4 θ
2

 

As you may remember this is precisely the classical expression for the cross-section 
for scattering in a Coulumb field. Our rules give us the correct result and give us an 
interaction force that is proportional to   1/r2 . 
 
In the quantum electrodynamics (QED), diagrams with more that one internal line 
(more than two vertices) will correspond to higher powers of the dimensionless factor 

   
α = e2

4πε0!c
≈ 1/137  in the amplitude. This factor is a small number that means that 

such diagrams can be neglected in a first approximation. 
 
More about vertices 
 
In the reaction that we studied above a vertex looks like: 

  
The nice thing about the diagram technique is that we can now reverse the arrows and 
thereby switch the particle that is represented by the line with the corresponding 
antiparticle. Thus we can transform our vertex to 

  
and so write down amplitudes for a great number of other reactions. Note that a vertex 
always consists of one photon line and two electron / positron lines. The electric 
charge is conserved in a vertex. 
 
As an example we can study the scattering of an electron against a positron. We first 
draw this as a "bubble" diagram". 

  
The next step is to figure out what is inside the bubble. We can use vertices and 
internal lines, each vertex must conserve charge and also we usually only want to 
consider first order diagrams. Some thinking gives the following allowed diagrams: 
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Note that each of these diagrams is the sum of two fundamental time-ordered 
diagrams. We indicate this by having the internal photon line either vertical or 
horizontal. 
 
If we now use our rule for translating a diagram to mathematical expression, the left 
diagram will correspond to the amplitude 

 
  
A1 = −e( ) 1

−P2 −e( )  

where P is the difference between the momenta if the incoming and outgoing electron. 
 
The diagram to the right gives 

 
  
A2 = −e( ) 1

−Q2 −e( )  

where Q is the sum of the momenta if the incoming electron and positron. 
 
The total amplitude is the sum of these two amplitudes and the cross-section is 
proportional to the square of the modulus of this sum. 
 
Compton scattering: Scattering of photons against electrons 
 
We again start with a bubble diagram 

  
 
The possible diagrams are 

    
  
with amplitudes 

 
  
A1 = −e( ) 1

me
2c2 − (K + P)2 −e( )  

  
A2 = −e( ) 1

me
2c2 − ( ′K − P)2 −e( )  

respectively. 
 
In both these last examples it turns out that our calculation is not very meaningful as it 
will be important to take into account kinematical factors from the external lines that 
we have neglected. However, we can estimate the Compton cross section by 
dimensional analysis. The cross-section has dimension length squared. The only 
factors that we have at our disposal is  ! , c,  ε0 , and  me . We also know that we will 
have the cross section proportional to   e4  as we have two vertices. If we introduce the 
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dimensionless parameter 
   
α = e2

4πε0!c
, mentioned before, it turns out that the only 

combination giving the correct dimension to the cross-section is 
   

dσ
dΩ

∝α 2 !
mec

⎛
⎝⎜

⎞
⎠⎟

2

. 

The quantity in the bracket is the Compton wavelength. The total cross-section will be 
the differential cross-section above, integrated over all angles. A more accurate 
calculation that includes the spin of the particles will give 

 
   
σ = 8π

3
α 2 !

mec
⎛
⎝⎜

⎞
⎠⎟

2

≈ 6.5·10−29 m2  

Using the definition of the cross-section means that if we have a single electron and a 
flux of one photon per square meter and second, the probability of scattering is 
6.5·10-29. We get the same probability if we have one electron per square meter and a 
single incoming photon. If we have n electrons per cubic meter in a layer with 
thickness l, the scattering probability will increase by a factor n·l and will be  nlσ . 

The probability will be 1 for a thickness given by 
  
l = 1

nσ
, 

 
This distance is called the mean free path for photons. Am important observation is 
that the Compton cross-section is inversely proportional to the mass squared of the 
matter particle. If we for instance consider Compton scatter of photons against 
protons that have a mass that is about 2000 times the electron mass, we will have a 
scattering cross-section that is a factor 1 / 4 000 000 smaller than the electron-photon 
cross-section. This has very important consequences for cosmology, as we will see 
later on. 
 
Review: Check that you know and can apply the diagram rules. 
 
Problems: 
1. Draw Feynman diagrams for the annihilation process  e

+e− →γγ  (one diagram) and 
write down the corresponding amplitude. 
 2. Draw Feynman diagrams for the process  e

+e− → µ+µ−  (one diagram) and write 
down the amplitude. 
3. Draw Feynman diagrams for the elastic scattering process  e

+µ− → e+µ−  (one 
diagram) and write down the amplitude. Note that the lepton number is conserved by 
family. 
 4. Show that all these reactions are forbidden and give the reason why: 
  µ

− → e+e−e−  
  µ

− → e−γ  
  τ

+ → µ+e−µ+  
5. The Ψ  meson contains a  cc  pair that annihilates to µ+µ−  via electromagnetic 
interaction. Draw a diagram to show how this happens. 
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Chapter 4. The electroweak interaction 
 
The "usual" weak interaction is due to the exchange of the vector bosons W+ and W–. 
They convert a quark from the upper row in the scheme to a quark in the lower row or 
vice versa. Also leptons in the corresponding rows can be converted into each other. 
Study the figure below that shows the quark diagram of the decay of a neutron. 

   
The d quark in the neutron is converted into a u quark that means that the charge is 
increased by one unit. In order for the electric charge to be conserved, a W– has to be 
emitted. This W– then decays into an electron and an anti-electron neutrino, this 
conserves the electron-lepton number and the electric charge. In the same way as we 
saw earlier there is another diagram where a positive W boson is emitted by the lepton 
pair and then absorbed by the d quark that is converted into a u quark. The sum of 
these two time-ordered diagrams will, as before, result in a Feynman diagram 

    
where we haven't drawn the quarks that do not participate in the process., the so-
called spectators. We have here a new type of vertex where the coupling strength in 
both the upper and lower vertex in this case is given by   g/ 2 . The constant g is, as 
we will see later on, of the same order of magnitude as the charge of the electron and 
more precisely it is 

 
  
g = e

sinθW
 

is the so-called Weinberg angle that has an experimental value of about 29°. 
 
We can now write down the amplitude of the reaction by using our rules from the 
previous chapter 

 
  
A ∝ g

2
⎛
⎝⎜

⎞
⎠⎟

1
mW

2 c2 − P2
⎡

⎣
⎢

⎤

⎦
⎥

g
2

⎛
⎝⎜

⎞
⎠⎟
= e

sinθW 2
⎛

⎝⎜
⎞

⎠⎟
1

mW
2 c2 − P2

⎡

⎣
⎢

⎤

⎦
⎥

e
sinθW 2

⎛

⎝⎜
⎞

⎠⎟
 

where mW is the mass of the W boson that has the value 80 GeV/ c’. Incidentally, as 
there are two d quarks in the neutron that can participate, this amplitude will be 
multiplied by a factor of 2. 
 
The amplitude above corresponds (see the section on scattering in your previous 
course in quantum mechanics) to scattering in a screened Coulomb potential 

 
   
V r( ) = 1

r
e−rmWc/!  
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The range of this potential is of the order 
  

!
mWc

. We can understand this also from the 

uncertainty relation. If we create a particle with energy   mWc2  it can exist only during 
the time    Δt ≈ !/mWc2 . Assuming that it moves with the speed of light the range of 
the interaction will be    cΔt ≈ !/mWc . If we insert the value of the mass of W, we find 
that the range is of the order 10–18 m. The weak interaction has an extremely short 
range. 
 
Other similar diagrams are 

     
 

     
Exercises: 
1. Write down the amplitudes for the reactions above. You have the same coupling as 
above in the respective vertex. Check that all the conservation rules are fulfilled. 
2. Could the neutron decay as  n → pµ−νµ ? Why not? 

3. Give another possible leptonic decay of π −  than that shown above. This alternative 
decay is actually the most common one. 
 
As the mass of the W boson is very large, we can, if the reaction energies are small 
compared with the mass energy, neglect the four-momentum in the denominator of 
the factor that represents the inner line. In such cases we can approximate the 
amplitude by 

 
  
A ∝ e

sinθW 2
· 1
mW

2 c2 · e
sinθW 2

 

The large mass in the denominator will make the interaction "weak" in addition to 
having a vary short range. This is characteristic of the weak interaction. 
 
By colliding an electron-positron pair at high energy we can produce a W+W– pair. 
The diagram describing this situation is 

   
Exercise: What particles would we actually see in a track detector in this reaction? 
 
We can write down the amplitude of this diagram. Unfortunately the probability of 
the process gets larger than 1 for very high energies. There must be an error in our 
theory. It turns out that the way of generating the weak interaction via a symmetry 
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called local gauge invariance (we will touch upon this subject in a later chapter) also 
introduces a W0 particle that is electrically neutral. The theory also predicts that W0 
will couple to e+e– (and  dd ) by –g/2 and to νν  (and uu ) by g/ 2. Finally also three 
(and four) W:s can couple together. We can then have another possible diagram for 
the process: 

  
(The coupling between the three W:s has strength g.) It then turns out that the two 
amplitudes interfere destructively such that the final result stays reasonable. 
 
The existence of a neutral W particle makes a lot of other scattering processes 
possible: 

          
 
In the second of these reactions, the contribution from W0 would be vary hard to 
detect in comparison to the much larger amplitude fro m photon exchange. The third 
process would also be very hard to detect as it involves only neutrinos that are almost 
impossible to detect. In the other processes it is possible to detect the presence of the 
neutrino by observing the recoil of the other particle. 
 
Experimentally the effect of an electrically neutral exchange particle was observed in 
1973 at CERN in νe, νp, and νn collisions. The scattering probabilities of these 
reactions are however not the one you would expect. It corresponds instead to the 
exchange of a heavier, electrically neutral particle that was called Z that had different 
coupling strengths. 
 
In 1983 people succeeded in producing real Z particles in collisions between protons 
and antiprotons. The reactions used were 
 

   and     
 
The mixture of weak and electromagnetic interactions 
 
In 1968 Abdus Salam and Stephen Weinberg independently suggested a model that 
mixes the electromagnetic and weak interactions in a way that explains all the 
experimental observations up to the present date. They assumed that besides the W0 
there was another electrically neutral exchange particle, B. All leptons have the same 
probability of emitting (or absorbing) a B particle. The coupling strength is 
conventionally written –g’/ 2. In any scattering process where W0 can be exchanged, it 
is also possible to exchange a B. These two contributions to the scattering process 
interfere such that it is not possible to decide which particle is exchanged. The 
exchanged particle will be a quantum mechanical mixture of W0 and B. We can then 
write down two such possible orthogonal mixtures: 
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   γ = BcosθW + W 0 sinθW  
   Z = −BsinθW + W 0 cosθW  
Here  θW  is the so called Weinberg angle. The first combination correponds to the 
ordinary photon. 
 
This is similar to the mixture of light with different polarizations. By mixing two 
linearly polarized electromagnetic waves we can get waves with circular polarization 
(left and right). In some cases the two circular polarizations propagate with different 
speeds in a medium that could be interpreted as if they represented different particles 
with different masses. 
 
Assuming the mixture above we can write down the coupling strengths of the new 
particles (the mixtures) to different leptons and quarks. 
 
ν ’s coupling to γ :   

1
2 − ′g cosθW + gsinθW( )  

ν ’s coupling to Z:    
1
2 ′g sinθW + gcosθW( )  

e’s coupling to γ :    
1
2 − ′g cosθW − gsinθW( )  

e’s coupling to Z:    
1
2 ′g sinθW − gcosθW( )  

 
We require that the neutrino does not couple to γ  as it is electrically neutral. This 
gives 
   − ′g cosθW + gsinθW = 0  
or 
   tanθW = ′g /g  
Furthermore we require that γ  couples to the electron with strength –e: 
   − ′g cosθW − gsinθW = −e  
Combining the results we have 
   g = e/sinθW     ′g = e/cosθW  
This determines the other couplings: 

ν Z: 
  
e
2

tanθW + cotθW( )  

eZ:  
  
e
2

tanθW − cotθW( )  

 
These couplings agree well with experimental observations. 
 
The Higgs mechanism 
 
The mathematical theory that generates the weak and electromagnetic interaction 
(local gauge theory) requires that the force particles are without mass. This is 
obviously not the case for the weak interaction. Also we would like to explain why 
the mixtures we see in Nature are precisely those we have above. Now, a massless 
particle moving in a medium can behave as if it had a mass. Compare for instance 
with an electromagnetic wave moving in an electron plasma with number density  ne , 
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which we treated in the earlier course (FYS 022). In that case, the electromagnetic 
waves (photons) behave as if they had a mass determined by the plasma frequency 

 ω p 0) 

 
   
mc2( )2

= !ω p( )2
= !2 nee

2

ε0me
∝nee

2  

We can interpret this as if the photon is repeatedly absorbed and reemitted and 
thereby is slowed down to behave like a massive particle. 
 
We see that the mass squared will be proportional to the coupling strength to the 
medium and to the number density of the medium particles. Now we assume that 
vacuum is a special plasma, the Higgs medium, consisting of neutral, spinless, 
neutrino-like particles and their anti-particles that we call N and  N  . We assume that 
W, Z and γ interact in the same way with these particles as with ordinary neutrinos. 
Then W will interact with the N particles, creating an intermediary positive particle to 
get a mass given by 

 
  
mW

2 = K g
2

⎛
⎝⎜

⎞
⎠⎟

2

= K g2

2
 

A Z particle will get a mass 

 
  
mZ

2 = 2K 1
2 ′g sinθW + gcosθW( )⎡⎣ ⎤⎦

2
= K g2

4cos2θW
 

The factor 2 in front of K comes because Z, being neutral, can interact with both N 
and  N . 
 
This implies that we can express the mass of Z by the mass of W: 

 
  
mZ =

mW

cosθW
= 91GeV/c2 

This fits very well with the experimental value of the Z mass and gives an 
independent confirmation of the theory. 
 
The photon gets mass zero as it doesn't couple to the neutrinos and thus not to the 
Higgs medium. 
 
We can investigate what happens if a W0 or a B is absorbed by the N particles in the 
Higgs medium. As W0 and B are neutral, the N particles will continue as (virtual) N 
particles. When the N particles again emit W0 and B they will not remember what they 
absorbed earlier. The amount of W0 and B will be determined by the respective 
coupling strengths and the emitted mixture will be 

 

  

W 0 g
2
−B ′g

2
= W 0 e

2sinθW
−B e

2cosθW
=

e
2sinθW cosθW

W 0 cosθW −BsinθW( ) = e
2sinθW cosθW

Z
 

Whatever combination of W0 and B that was absorbed there will always be a Z 
emitted! The Higgs medium will act as a filter that separates any mixture of W0 and B 
into a Z that interacts with the medium and gets mass, and a γ  that will not interact 
with the medium and thus will stay massless. 
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We can therefore say that 
  massless exchange particles + Higgs medium 
  = Some of the exchange particles get mass 
We cannot observe the particles in the Higgs medium directly, only through the fact 
that they give some of the exchange particles mass. However, in complete analogy to 
an electrically charged plasma, there can be longitudinal pressure waves in the plasma. 
These waves are quantized and would correspond to a particle, the Higgs particle that 
should be observable. The experimental difficulties were formidable, but in 2013 the 
Higgs particle was finally found at CERN with a mass of about 120 GeV. 
 
Couplings to the quarks 
 
W couples to the quarks in the same way as to the leptons, i.e. W± couples with 
strength   g/ 2  and W0 couples with strength g / 2 to the upper row, u, c, t and with  
–g / 2 to the lower quarks: d, s, b. However, the B particle couples with strength g’ / 6 
to all the quarks. This gives correct electric charges to the quarks. 
 
Exercise: Check that with these couplings the photon couples with strength +2e / 3 to 
the upper quarks and with strength –e / 3 to the lower quarks. Then show that the 
quark couplings to Z are: 

 Upper quarks: 
  
− ′g

6
sinθW + g

2
cosθW = e

2
− 1

3
tanθW + cotθW

⎛
⎝⎜

⎞
⎠⎟

 

 Lower quarks: 
  
− ′g

6
sinθW − g

2
cosθW = − e

2
1
3

tanθW + cotθW
⎛
⎝⎜

⎞
⎠⎟

 

These couplings describe the experiments very well, again a confirmation of the 
Salam-Weinberg model. 
 
Some complications in the electro-weak model 
 
a) It turns out that we have to modify our original scheme for the quarks somewhat. 
For the two first families we have instead 

 
 

u
′d

⎛
⎝⎜

⎞
⎠⎟

c
′s

⎛
⎝⎜

⎞
⎠⎟

 with 
  

′d = dcosθC + ssinθC

′s = −dsinθC + scosθC
 

 θC  is the Cabbibo angle that has an experimental value of about 13°. The weak 
interaction will then change a d’ quark into a u quark. As d’ is a mixture of d and s 
this means that  d ↔ u  with probability   cos2θC  or 0.95 and  s ↔ u  with probability 

  sin2θC or 0.05. This means that there is a small probability that the weak interaction 
converts quarks between the families. There is actually a mixing between all the 
families that allows also conversions between the c- and t families and also with very 
small probability between the t and u families. Note, however, that conversions 
between families will always go in a zigzag manner, never horizontally between 
families. It is not possible for example to convert a s quark to a d quark with the help 
of a Z. 
 
Exercise: Show that given that the vertex dsZ has zero coupling, this implies zero 
coupling for d’s’Z. 
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b) A particle with spin 1/2 can be either right-handed or left-handed: 

    
For massless particles (for instance neutrinos), that move with the speed of light, the 
handedness is a given property that cannot change. It turns out that neutrinos are left- 
handed in nature while anti-neutrinos are right-handed. We also speak of positive and 
negative helicity for right- and left-handedness respectively. 
 
For a massive particle we can change the handedness by looking at the particle from a 
frame that moves parallel with the particle and with a higher speed. The particle will 
then seem to move in the opposite direction while the spin direction is unchanged. 
 
All couplings that we have given earlier are only valid for left-handed particles or 
right-handed antiparticles. All couplings with W (W+, W–, W0) and right-handed 
particle / left-handed anti-particles are zero! This leads to some modifications in our 
earlier scheme for couplings that you can study in the attached sheet with couplings at 
the end of this book. In most problems you are allowed to do the computations as if 
all the particles are left-handed (right-handed anti-particles) i. e. you can use the 
simple theory given before. 
 
(We don't know if right-handed neutrinos / left-handed antineutrinos exist in nature. If 
they exist, they will not interact with the W:s. As the neutrino is neutral electrically it 
will not interact with γ. But then it cannot interact with B either. Neutrinos do not 
interact strongly. This means that such neutrinos would only interact gravitationally 
which means that they would be extremely hard (at present impossible) to detect 
experimentally.) 
 
c) The Higgs medium is also used to give the electron and the quarks their masses, 
that is they are fundamentally massless. In fact this also explains why the electron can 
be both right- and left-handed. The massless electron has a definite handedness. When 
it interacts with the Higgs medium it is slowed down and we can think about this as if 
the electron collides with the N particles and moves in zig-zag in space, see figure. 

  
The small red arrows show the spin direction. The spin direction will not change in 
the collisions that means that if the electron is originally right-handed it will during 
the time it moves ”backwards” be left-handed and during this time has possibility to 
interact with the W particles. An electron at rest will be left- and right-handed with 
equal probability. 
 
This gives an explanation why the π-meson prefers to decay to a mu (and a µ anti-
neutrino) instead of to an electron (and an electron anti-neutrino). The π-meson has 
spin zero. The outgoing anti-neutrino is right-handed. By angular momentum 
conservation the outgoing lepton then also has to be right-handed. But the 
intermediary vector boson does not couple to right-handed leptons. However, as 
shown above, a lepton moving in the Higgs medium is partly left-handed. The muon 
is about 200 times more massive than the electron and so moves much slower and 
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therefore has a much larger left-handed component making it couple much stronger to 
the vector boson.  
 
An interesting final example 
 
We are now in a position that we can show quite convincingly that there are no more 
than three families of neutrinos (thus only three families totally) 

   
The Z particle can be produced in e+e– COM collisions. The Z can then decay to 
hadron, that is a  qq pair, a charged lepton pair or a neutrino pair. For the  qq  pair only 

 uu ,  cc ,  dd ,  ss , and  bb  are possible energetically. For the lepton decays e+e–, µ+ µ–, 
and τ+τ–, are possible. In the diagrams above the left vertex is the same and can be left 
out. Also if the experiments are done for energies in the neighbourhood of the Z rest 
mass we can neglect photon exchange. The energies of the decay particles (=45 GeV) 
are high enough to make these particles essentially massless. However, we have to 
include the possibility that the particle pair can be either left- or right-handed. We 
calculate the (relative) probabilities using a Weinberg angle of 28.75˚. 
 
Left-handed decays: 
2 

Z to upper  qq  pair  
  

e
2

− 1
3

tanθW + cotθW
⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥

2

= e2·0.672  

Z to lower  qq  pair  
  
− e

2
1
3

tanθW + cotθW
⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥

2

= e2·1.006  

Z to charged lepton pair  ll  
  

e
2

tanθW − cotθW( )⎡
⎣⎢

⎤
⎦⎥

2

= e2·0.406   

Z to neutrino pair νν  
  

e
2

tanθW + cotθW( )⎡
⎣⎢

⎤
⎦⎥

2

= e2·1.406  

Right-handed decays: 
 

Z to upper  qq   
  
− 2e

3
tanθW

⎡
⎣⎢

⎤
⎦⎥

2

= e2·0.134  

Z to lower  qq  pair  
  

e
3

tanθW
⎡
⎣⎢

⎤
⎦⎥

2

= e2·0.033  

Z to lepton pair  ll    e tanθW⎡⎣ ⎤⎦
2 = e2·0.301  

Z to neutrino pair νν  0 
 
Summing the left- and right-handed alternatives we get 
 
 
Z to upper  qq  pair   e2·0.806  
Z to lower  qq  pair   e2·1.039  
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Z to lepton pair   e2·0.707  
Z to neutrino pair   e2·1.406  
Then 

  P Z→ qq( )∝ e2·3 2·0.806+ 3·1.039( ) = e2·14.188  (The first factor 3 is for the three 
quark colours, see chapter 5) 

  P Z→ l+l−( )∝ e2 0.406+ 0.301( ) = e2·0.707  (per generation) 

  P Z→νν( )∝ e2·1.406  (per generation) 
 
The experimental total width of  Z→ anything is 2.490 GeV. 
The experimental width of  Z→ hadrons is 1.741 GeV. 
The experimental width of  Z→ charged leptons is 0.0838 GeV. 
The computed width of  Z→ neutrinos normalized with the hadron width  
 1.741 Gev·1.406/14.188 =0.173 GeV. 
The computed width of  Z→  neutrinos normalized with the lepton width 
 0.0838 Gev·1.406/0.707 =0.167 GeV. 
Average 0.167 GeV. 

We now make a check 
  

Z→ hadrons
Z→ leptons

⎛
⎝⎜

⎞
⎠⎟ exp

= 20.77  and 
  

Z→ hadrons
Z→ leptons

⎛
⎝⎜

⎞
⎠⎟ theor

= 20.07  

Assuming N families of neutrinos we have that 
N·width of  Z→ neutrinos = 
 Total width – (width of  Z→ hadrons ) – 3·(width of  Z→ leptons ) 
(We have 3 kinds of possible lepton pairs) 
Inserting numbers we have 
 N·0.170 = 2.249 – 1.741 – 3·0.0838 = 0.4976 
Finally giving N = 2.93!!!, i.e. there are three families. 
 
Review: Repeat the mechanism behind the weak interaction. Why is it weak? Why is 
the range so short? Why is the W0 needed? Explain the mixing between the weak and 
electromagnetic interaction. Describe how we fix the coupling constants. How do the 
weak gauge particles get mass? How could we find a relation between the W and Z 
masses. What is the Cabbibo angle? How is the theory changed if we have right-
handed particles? 
 
Problems:  
1. The  Ψ *  meson has the quark content  cc  and mass 3.77 GeV/c2. It can decay in a 
D+D– pair with quark content  cd and  cd respectively. The c quark can decay to s + u 
+  d . 
a) Which particle is involved in the decay of the c quarks? Show in a diagram what 
happens. 
b) Give some possible final states for the decay of the D+ meson. 
2. By comparing the expression for the Rutherford cross-section in the Born 
approximation (see the earlier course in quantum mechanics) and the expression you 
get to first order in our simplified model of quantum electrodynamics for e+e– 
scattering We can determine the proportionality constants that we have neglected. We 
find that the cross-section can be written 
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dσ
dΩ

= m
2π

⎛
⎝⎜

⎞
⎠⎟

2 e2 /ε0

P1 − ′P1( )2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

2

 

where   P1 − ′P1( )2
 is a four-vector scalar product with   P1 and   ′P1  being the four-

momenta of the in- and outgoing electron respectively. m is the electron mass. The 
expression above is valid for non-relativistic particles. 
 
Now repeat the steps of how to compute the density of states for non-relativistic 
particles! Fundamental in this computation is.: 
 
a) The number of states in an infinitesimal "volume element" in p-space (momentum) 
that is given by 

 
   

V

2π( )3
1
!3 dpxdpydpz =

V

2π( )3
1
!3 p2dpdΩp  

V is the normalisation volume. As we know that it anyhow will drop out in the final 
result we put it equal to 1 for the moment. 
 
b) To get the density of states in energy (that is what we need in Fermi's Golden Rule), 
we have to translate the momentum in the expression to energy. For a non-relativistic 
particle we do this by using the relation   p

2 = 2mE . Now compute the density of states 
in energy for such a particle! 
 
c) For a massless relativistic particle (photon, neutrino) we have instead  p = E/c . 
Compute the density of states in this case. 
 
d) For a relativistic massive particle we have  p

2 = E2 /c2 − m2c2 . Compute the density 
of states also for this case! 
 
e) In the cross section we divide by the influx of particles (the number of incoming 
particles / time and area). This influx of particle is proportional to the speed of the 
particles divided by the normalisation volume. Determine the influx of particles 
expressed in m, p, and E and the normalisation volume V for massive non-relativistic 
particles, massless particles and relativistic massive particles respectively. 
 
f) Show that for relativistic particles (massive or massless) you get the same 
expression for the cross section as above but with the substitution  m→ E/c2 . 
 
g) Many neutrinos are produced in the sun in the fusion of hydrogen and reach the 
earth with the enormous flux 6·1014 m–2s–1. Estimate the probability per second that a 
neutrino that passes your body from head to toes will interact with you. Assume that 
the reaction that happens is 
  ν e + d → e− + u  
Furthermore, assume that the neutrinos have an energy of about 0.5 MeV. Use the 
cross-section from f) above, but change the electron charge (the electromagnetic 
coupling) with the coupling you have with a W-exchange. Finally you must modify 
the denominator in the factor from the internal line due to the mass of W. You can 
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also, if you want, use that 
   
α = e2

4πε0!
≈ 1

137
. Hint: Use that the reaction probability 

per time = cross-section · influx. Answer: 10–4 s–1. 
 
3. Estimate the lifetime of the decay π − → µ−νµ . Use the cross section in problem 2, 
assume that the quarks move with the speed of light in a "blob" with radius 1 fm and 
collide with each other. The lifetime = 1 / the reaction probability. Answer: 10–9 s. 
 
4. Via the weak interaction K0 can transform into its own antiparticle  K0 . This can 
occur by a diagram of the type 

  
What particles can substitute for 1, 2, 3, and 4 in the figure (several possibilities)? 
Why will the probability for this conversion be very small? (Two reasons!) 
 
5. If a c quark is produced it can be part of a  Λc = udc( )baryon. Give some possible 
decays of this particle, with leptons and without leptons in the final state. Draw 
diagrams! State how these decays are influenced by the Cabbibo angle. 
 
6. We study the ratio between cross sections of two neutrino reactions (at the same 
energy) 

 
 
R =

P νµ + N →νµ + X( )
P νµ + N → µ− + ′X( )  

N is here an atomic nucleus, X and X’ respectively the resulting nucleus in the final 
state. Assume that the reaction energy is much smaller than the mass of W and Z but 
large enough for the muon mass to be neglected. Furthermore, assume that the 
nucleus contains as many protons as neutrons. If you want you may also assume that 
all quarks are left-handed. Compute using the Standard Model the value of R. 
 
7. A u-quark can, via the weak interaction, change into a superposition d’, of d- and s- 
quarks: 
   ′d = dcos2θC + ssin2θC  
The Cabbibo angle,  θC , can be determined by studying the decay rates of the decays 
π + → µ+νµ and  K

+ → µ+νµ The decay rate Γ  is defined by the relation Γ  = B / τ 
where τ  is the mean lifetime and B the branching ratio. Γ  is proportional to a 
kinematical factor (essentially the density of states · factors that appear when you sum 
over the spin of the outgoing particles) and a dynamical factor according to 

 
  
Γ ∝

ml
2 mm

2 − ml
2( )

mm
2 · 1

mW
4 · coupling strength q1q2 → W

2  

where mm is the meson mass and ml, the lepton mass (in this case the muon mass). 
 

Estimate the Cabbibo angle using the ratio 
 

Γ K+ → µ+νµ( )
Γ π + → µ+νµ( )  
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(The value will only be approximate as it is also influenced somewhat by the different 
binding of the quarks in the K- and π meson). 

Experimentally we know for the decays 
  

K+ → µ+νµ :τ = 1.24·10−8s; B = 0.635
π + → µ+νµ :τ = 2.64·10−8s; B = 1.00

 

Answer: 15°. 
 
8. At the LEP accelerator in CERN in Geneva, electrons collide with positrons with a 
total energy in the centre of mass system of 91 GeV, corresponding to the mass of Z0. 
Among other things people search for the Higgs particle that would be produced by 
the reaction 

  
where Z*0 is virtual (an intermediate state that doesn't have to have the correct mass) 
while Z0 is real and H is the Higgs particle. 
 
a) What is (today very unrealistically) the mass of the Higgs particle if the outgoing 
electron and positron have energies 15 GeV and 25 GeV respectively and the angle 
between their momenta is 90°? (42 GeV/c2) 
 
A Higgs particle with this mass would decay predominantly in  bb pairs. These pairs 
will create B- and  B -mesons respectively. The b quark decays into a c quark that in 
turn decays. 
 
b) Write down some characteristic decays of the B– meson (that has the quark content 
 bu ). Show that these decays often generate K-mesons and leptons. 
 
c) The Z0-particles that are produced at LEP will often decay in a quark-antiquark pair. 
What quark types will be most abundant? (Hint: Look at the difference in coupling 
between up and down quarks Z0.) 
 
d) If a c-quark is produced it can end up in a Λc = udc( ) . Draw some quark diagrams 
(with or without leptons in the final state) that show possible decays of Λc . 
 
e) Indicate how the decays in d) are influenced by the Cabibbo angle. 
 
f)  Λc can decay weakly by   Λc →Λ0µ+νµ . In one experiment a Λc decays at rest 

according to this reaction. The momenta of  Λ0 and µ+  was measured to 496 MeV / c 
and 533 MeV/ c respectively. Compute the mass of  Λc if the angle between the 
detected particles  Λ0  and µ+ was 123°. mΛ = 1115 MeV/c’, mµ = 105.7 MeV/c’. 
(2256 MeV/c2)  
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Chapter 5. Quantum Chromodynamics (QCD)  
 
The idea that the hadrons are composed of quarks is quite nice. However, there are 
several problems with this quark model: 
 
• Where are the free quarks? 
• Why do quarks combine only in triplets or quark-antiquark combinations? 
•There are problems with the simple quark model and the Pauli principle. 
 
If we start with the first problem, it is actually possible to see bound quarks in the 
nucleons. Scattering experiments are often used to investigate the finer structure of a 
system. This was the idea when Ernest Rutherford scattered alpha particles against 
gold atoms in 1911 that led to the picture that t-here is an almost point-like nucleus in 
an atom. 
 
Suppose now that we want to explore the structure of a proton by scattering electrons 
against it. The size of a proton is of the order of 1 fm that means that we need 
electrons with a wavelength that is smaller than this size. Such electrons have an 
energy of the order of 100 MeV and are highly relativistic, meaning that we can 
neglect their rest mass (0.5 MeV) and threat them as massless and photon-like. We 
assume that the electrons are scattered against some more or less point-like objects 
(quarks?) inside the proton. To first approximation we assume that these quarks are at 
rest. The relativistic calculation of such a collision is precisely that of Compton 
scattering: 

   
Energy-momentum conservation gives 
   P + Pq = ′P + ′Pq ⇒ P2 + ′P 2 + Pq

2 − 2P ′P + 2 P − ′P( ) = ′Pq
2  

Neglecting the mass of the electron we have 
  Pq P − ′P( ) = P ′P  
or 
   m E− ′E( ) = E ′E /c2 − p ′p cosθ  
or 

 
  
x = mc2

mpc
2 =

E ′E 1− cosθ( )
mpc

2 E− ′E( )  

where we have normalised the result by dividing by the rest energy of the proton. 
Knowing E and measuring E’ and θ  makes it possible to calculate x, essentially the 
mass with which the incoming electron collided. 
 
We now measure E’ for fixed θ  and E and get a distribution F(x). We can then 
change the values of E and θ  and repeat the measurements. 
 
Now if the proton is elementary we would expect the following result of such an 
experiment: 
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If the proton consists of three quarks at rest we would expect: 

     
If we take into consideration that the quarks can move inside the proton our 
calculation is not valid but we could guess that we would have a continuous 
distribution around x = 1/3: 

   
Finally if we also take into consideration that there are virtual quark-antiquarks that 
can exist for short times inside the proton, so called sea quarks, the distribution would 
look something like this: 

   
This is actually what we see in the experiments!! I The figure below shows this: 

  
All the points lie on a common curve that is an indication of the existence of quarks. 
It is even possible to investigate the different kinds of quarks inside the proton. Study 
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the reactions 
  ν e + p→ e− + hadrons  
  ν e + p→ e+ + hadrons  
Exercise: These reactions involve the exchange of a W-boson. Show that in the first 
reaction only the d-quark in the proton can interact. Show that in the second reaction 
only a u-quark can interact. This means that the neutrinos only "see” a d- and a u-
quark respectively. 
 
From these scattering experiments we can determine the pure quark distributions 
Fu(x) and Fd(x). The total function F(x) will be the sum of the pure distributions each 
weighted with the square of the electric charge of the respective quark or 

 
  
F x( ) = 4

9
Fu x( ) + 1

9
Fd x( )  

The result of this operation is shown as the line in the figure above. The agreement 
with the results from electron scattering is a strong support for the quark theory and 
also confirms the value of the electric charges of the quarks. 
 
We get yet another interesting picture if we look at the differential cross-section for 
e+p and e–p scattering. More specifically we look at the two "neutral current” 
reactions (the exchanges particle is neutral, a photon and/or a Z)  
  e

+p→ e+X  
  e

−p→ e−X  
and the two "charged current" (W-exchange) reactions 
  e

+p→ν eX  
  e

−p→ν eX  
In all these reactions the exchanged particle reacts with a quark in the proton. 
What is measured is the differential cross-section 

 

  

dσ
dQ2 ∝ dσ

dΩ
∝ coupling factors

M2c2 − Pe ,in − Pe ,out( )2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

2

= coupling factors
M2c2 +Q2

⎛
⎝⎜

⎞
⎠⎟

2

 

where M is the mass and   Pe ,in − Pe ,out  the four-momentum of the exchanged boson. 
The graphs below shows the measured cross-sections: 

 
We can see several interesting things in these diagrams. 
a) The slope of the neutral cross-section for reasonably small Q2 is about -4 in the 
logarithmic scale. (Explain why!) 
b) We see that at high Q2 the charged and neutral cross-sections become more or less 
the same.(Explain why!) 



 29 

c) The charged cross-section for e–p for reasonably small Q2 is roughly twice the 
cross-section for e+p.(Explain why!) 
d) Why does the neutral current curve bends for higher Q2 (Explain why!) 
 
So experiments tell us there are quarks. But why don't we see any free quarks? It turns 
out that we can solve all the problems that we listed in the beginning of this chapter 
by solving the problem with the Pauli principle. Study the Δ++ hadron that has the 
quark content 
  Δ

++ = u ↑ u ↑ u ↑( )  

The Δ++ has spin 3/2 and all the quarks must have parallel spins. Thus we have three 
identical fermions in the same state. This violates the Pauli principle. One way out of 
this dilemma is to postulate that the quarks are not identical because the have different 
"colour charge". We call conventionally these colour charges red (R), green (G) and 
blue (B). The particle above will then look like 
  Δ

++ = uR ↑ uG ↑ uB ↑( )  
The particles are no longer identical and we have solved the conflict with the Pauli 
principle. 
 
This seems ad hoc but it turns out that this trick also explains several other properties 
of the strong interaction: 
 
• A gauge theory similar to the one that generates the weak and electromagnetic 
interaction but using three colour charges generates 8 force particles (gluons) in the 
strong interaction. Contrary to the photon the gluons are charged with colour. This 
means that gluons interact with other gluons! We can have bound states with gluons 
and as the gluons are massless it will be energetically favourable to fill empty space 
with as many as possible of such bound gluons. Vacuum will be a soup of gluons! As 
a matter of fact also the weak force particles interact with each other. The difference 
is here that as the W:s have mass the bound states will not as with the gluons have 
negative energy. 
 
• When we separate two different electric charges it is energetically favourable for the 
electric field to spread in the space between the charges. With the strong interaction it 
is just the opposite! The colour field tries to use as little space as possible due to the 
vacuum- gluon-soup. This results in the field-lines being compressed into a one-
dimensional tube or string between the quarks. In such a case, the force between the 
quarks will be constant, independent on the distance between the quarks! This in turn 
implies that we cannot separate the quarks, to do this we need an infinite energy. This 
explains why we don't see free quarks! 
 
• The infinite energy in a free colour field means that only quark combinations where 
there are no external colour field lines will be possible. Allowed quark combinations 
will be quark-antiquark, quark-quark-quark or antiquark-antiquark-antiquark that is 
exactly the combinations that we see in nature! 
 
• In a nucleon the colour field will because of this extend only very little outside the 
nucleon. This results in the strong force having a very short range. 
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• When we separate two quarks in a collision process, the colour field between them 
will be drawn out into a kind of elastic string. When the energy stored in the field 
becomes large enough to create a new particle (a meson), the string will break while 
creating a quark-antiquark pair. This can happen several times and experimentally we 
see this as a shower of mesons, essentially moving in the same direction as the 
knocked-out quark. This is called a jet and is readily seen experimentally. 

  
• By studying in the ratio between the probability to produce hadrons and a muon- 
anti-muon pair in an electron-positron annihilation we can check the theory of the 
strong interaction, especially the concept of colour charge. The experiments confirm 
the theory. We will look into this in the next section. 
 
Exactly as for the electromagnetic and weak interaction we can draw diagrams of 
scattering processes and decays. A gluon exchange is then visualised by a spiral line. 
One example: 

  
Strictly the probability of exchanging gluons increases with the number of exchanged 
gluons. Thus, a more correct way of drawing this in the diagram would be to draw an 
"exchange surface": 

  
Electron-positron annihilation 
 
Interesting experiments can be done by colliding electrons and positrons at high 
energy in their centre of mass system. The electron and positron, being particle and 
antiparticle, annihilate and create a blob of energy. This blob of energy can then 
create a new particle-antiparticle pair of any kind. If the energy is not too big (less 
than the mass of the Z particle) the only diagram that can contribute essentially is  
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If we just study the vertex to the right we see that the reaction probability will be 
proportional to the charge in this vertex squared. This means that the probability of 
producing a µ+µ− pair will be 
   P e+e− → µ+µ−( )∝ e2  
On the other hand the probability of producing hadrons will be 
   P e+e− → qq( )∝ Qq

2∑  
Assume now that the COM energy is such that only the lightest quarks u, d, and s can 
be created. For each of them the created pair can be red-antired, green-antigreen, 
blue-anti-blue, 3 possibilities which gives 

 
  

Qq
2∑ = 2e
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This gives 

 
  
R =

P e+e− → qq( )
P e+e− → µ+µ−( ) = 2  

If the energy is high enough to produce also  cc pairs (3.7 GeV) we will have 

 
  
P e+e− → qq( )∝ Qq
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and   R = 3 1
3 . 

 
Another threshold is reached at 10.5 GeV where pairs of bottom quarks can be 
produced and we have   R = 3 2

3 . The figure shows experimental results with the 
theoretical prediction marked as a line. There are peaks in the experimental 
distribution when the energy reaches a threshold for producing a bound  qq  pair. 

  
 
The quantum chromodynamics also predicts that it would be possible to produce a 
gluon in an  e+e−  interaction. This gluon will give rise to an additional jet. A typical 
such event is shown in the figure below that indirectly proves the existence of gluons. 
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Review: 
What experiments indicate that there are quarks? Why don't we see free quarks? 
Introducing colour charge solves several problems with the strong interaction, Which? 
What experiments support the idea of colour? 
 
Problems: 
1. In collisions of pions and protons (or neutrons) you can easily produce the mesons 
K+ and K0 for example with the reactions 
   π

−p→ K0Λ0  
a) Draw a quark diagram showing this. 
b) It is much more difficult to create  K−  and   K0 Explain why! 
c) In a similar way not all K-mesons interact easily with nucleons and are absorbed in 
matter. Which of the particles K+ or  K− reacts most easy? 
 
2. Decide which of the reactions below that are possible by strong, electromagnetic 
and weak interaction respectively. If a reaction is forbidden you must state the 
conservation law that is broken. If the reaction is allowed you draw a quark diagram. 
In some of the reactions there is more than one possibility. 
a)   π

−p→π 0n         b)   K
−p→Ξ 0K0     c)  p→ ne+ν e  

d)   p→ e+π 0            e)   Ω− → Λ0K−K0  f)  π
−p→ K+Σ −  

g)  π
−p→ K−Σ +      h)   K0 →π +π −        i)   K0 →π +π −π 0  

k)   K0 →π +π −π 0π 0  l)  π
0 →γγ            m)   π +n → K0Σ +  

n)  K
−p→Ξ −K+      o)   Λ

0 →π +e−ν e     p)   K
+ →π 0µ+νµ  

 
3. One of the world's largest particle accelerators, the Tevatron, is situated at the 
research centre Fermilab outside Chicago. Here protons and antiprotons are 
accelerated to an energy of 900 GeV and collide with a centre of mass energy of 1.8 
TeV. In 1994 scientists at Fermilab could, for the first time, directly verify the 
existence of the top quark, t. Its mass was found to be 175 GeV/c’ and its lifetime 
4·10–25 s. The main mechanism for the production of the top quark is annihilation of 
one quark from the proton with an antiquark from the antiproton like for example in 
the following diagram: 
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Now, the proton and antiproton don't contain only quarks, but also a large number of 
gluons that together carry about half the proton / antiproton momentum. A top quark 
then can also be produced by the interaction of two gluons, one gluon from each of 
the proton and antiproton. 
 
a) Draw the two Feynman graphs that to lowest order contribute to this process
 gg → u . Hint: The gluons can couple to each other, leading to vertices where three 
gluons meet. 
 
b) Write down the expressions for the respective amplitudes. Neglect coupling 
strengths, spin and colour factors as well as kinematical factors in the expression, 
concentrate on the denominator. 
 
Top quarks decay according to  t → bW + before they have time to be bound in a 
hadron. The way to "see" a top quark is by reconstructing its energy and momentum 
from its decay products. 
 
c) At the Tevatron sometimes top quark pairs are produced by weak interaction. Draw 
a Feynman diagram for such a reaction and write down the expression for the reaction 
probability. Again neglect spin, colour and kinematical factors, but this time include 
the couplings. 
 
d) The b-quark from the decay of the top decay sometimes ends up in a B0 meson 
(with quark content bd ). Give examples of different final states of the decay of this 
meson both with and without leptons in the decay products. 
 
4. Certain measurements of the ratio between the cross sections of the reactions 
 e+e− → bb and  e

+e− → µ+µ− have shown a small discrepancy from the value that is 
predicted by the Standard Model. Compute the value predicted by the Standard Model. 
Assume that the energy is high enough such that only Z exchange is allowed. Also 
assume only left-handed couplings. Hint: Colour! 
Answer: 7.6 (Including right-handed couplings results in the value 4.4.) 
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*Chapter 6. Renormalisation and gauge symmetries 
 
Let us now look at an exchanged electron which we have up till now represented by a 
line. This electron can of course (and does) emit a photon that can then be absorbed. 
Symbolically 

      
If we correctly calculate the contribution from this Feynman diagram it turns out that 
it is infinite. And the situation is actually worse. We can have diagrams of the type 

   
that all give infinite contributions. Even worse, each photon in the photon line can for 
a moment be transformed into an electron-positron pair where the electron and 
positron in turn can emit new photons and so on! How can we handle this situation? 
We observe that a diagram of type ”a" can be split in two parts that look like the first 
diagram on this page while ”b” and "c” cannot be split in this way. This means that 
a ”real” exchanged electron (the thick line) must be written as a sum: 

  
where each "blob" contains a sum of all the complicated exchanges that cannot be 
further separated. Suppose now that we denote the contribution from the blob with B. 
The lines will be the expression for an internal line that we know and call Π : 

 
  
Π = 1

m0
2 − P2  

We have here introduced the "bare" mass m0 of the electron. The sum of diagrams can 
then be written 

 

  

Π = 1
m0

2 − P2

Π +ΠBΠ +ΠBΠBΠ + ... =

Π 1+BΠ +BΠBΠ + ..( ) = Π
1−BΠ

 

Inserting the expression for Π we have 

 
  

Π
1−BΠ

= 1
m0

2 − P2 · 1
1−B/ m0

2 − P2( ) =
1

m0
2 − P2 −B

 

Now comes the renormalisation trick. The bare mass is not observable because when 
we look at an electron it is always surrounded by its virtual photons. This means that 
the bare mass can be set to anything convenient. So if we now define the observable 
electron mass m by 
   m

2 = m0
2 −B  

we see that the thick exchanged electron line will be represented by 

 
  

1
m2 − P2  

that is the same expression as before but with the bare mass changed to be the 
observable mass. This is called mass renormalisation. It can be done in the same way 
also for an exchanged photon. Due to properties of the QED it remains massless. 
 
In the same way it turns out that we can redefine an external line to include all kinds 
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of ”blobs". This is called renormalisation of the wave function. 
 
Also the electric charge needs to be renormalised. Imagine an electron as a point 
charge. Very close to this charge the electric field will be extremely strong and 
contain a lot of energy. This means creation of virtual electron positron pairs where 
the positrons will be attracted toward the point charge while the electrons will be 
repelled. This is called vacuum polarisation and has measurable consequences for 
instance for the energy levels in a hydrogen atom. What you observe now will be the 
original point charge surrounded by a "screen" of positive charge and the observed 
electric charge will be less than the (unknown and unobservable) point charge in the 
centre. The renormalisation is now to take the value of the point charge such that the 
observable charge will be exactly what we measure experimentally –e, numerically 
e = 1.602·10–19 C. 
 
This also tells us that as we investigate the charge of the electron with particles of 
higher and higher energy, we will penetrate deeper and deeper inside the screen and 
the observed electric charge will change. This is actually observed experimentally. 
 
Not all field theories that you can invent have the properties above. Not all theories 
are renormalisable. However it turns out that a special class of theories that have what 
is called local gauge symmetry are automatically renormalisable. We will investigate 
gauge symmetry in the next section and find that this symmetry actually performs 
another miracle with the theory. 
 
Gauge symmetries 
 
Field theories start with a Lagrangian that is a function of the fields and their 
derivatives. The Lagrangian must be relativistically invariant. Suppose now that we 
want to develop a field theory for a scalar field for charged particles  φ x( ) and a field 

 φ x( )  (here the complex conjugate field) for the antiparticles. x stands for space and 
time coordinates. (For the moment we will use units such that the speed of light = 1.) 
The simplest non-trivial relativistic Lagrangian will then be 
   L φ ,φ ,∂µφ ,∂µφ( ) = ∂µφ ∂µφ + m2φφ  
We consider here the fields and their derivatives as "generalised coordinates". As 
usual in tensor calculus the repeated index µ means summation over this index. The 
Lagrangian equations are then given by 

 
  

∂L
∂φ

− ∂µ
∂L

∂ ∂µφ( ) = 0 ∂L
∂φ

− ∂µ
∂L

∂ ∂µφ( ) = 0  

The resulting equations will be 
    !φ − m2φ = 0 !φ − m2φ = 0  
These are nice equations because they admit solutions in the form of waves. They are 
called Klein-Gordon equations. Inserting a plane wave solution 

     φ = Ne
i
!

p·x−E·t( )
 

we immediately get    E
2 −p2 = m2 , the correct relation between energy, momentum 

and mass, if we interpret the constant m in the Lagrangian as the mass of the particle. 
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We now add the condition that the Lagrangian should be invariant under a global 
gauge transformation: 
   φ →φ·eiqΛ φ →φ ·e− iqΛ  
This is just a condition that we should always be able to multiply the field by an 
arbitrary phase. It is easy to see that the Lagrangian is invariant under this 
transformation. Actually as with all symmetries, this implies that there is a 
corresponding conserved quantity, in this case it can be shown that the gauge 
symmetry implies that the total charge is conserved. It is interesting to look at 
transformation from another point of view. Introduce 
two real fields and write 
   φ = φ1 + iφ2 φ = φ1 − iφ2  
Then it is easy to show that the real fields will transform like 

 
  

φ1 →φ1 cosqΛ +φ2 sin qΛ
φ2 →−φ1 sin qΛ +φ2 cosqΛ

 

i.e. a rotation in φ  space. The group corresponding to such a rotation is called U(1). 
Another way of interpreting the gauge transformation is that we are allowed to use the 
label positive / negative charge as we like, as long as we are consistent. 
 
The next step is to require that it ought to be possible to choose the phase A different 
indifferent space-time points as long as we change Λ  continuously, i.e. we let Λbe a 
function of x (space-time). Then we will have a local gauge transformation: 
   φ →φ·eiqΛ x( ) φ →φ ·e− iqΛ x( )  
It now turns out that our Lagrangian is not invariant under this transformation. The 
only way to get it invariant is to introduce a new "photon" vector field  Aµ  that 
transforms under a local gauge transformation like 
  Aµ → Aµ − ∂µΛ  
and to add some extra terms to the Lagrangian 
   L = ∂µφ ∂µφ + m2φφ + JµAµ + q2AµAµφφ  
where ‘ 
  Jµ = iq φ ∂µφ −φ ∂µφ( )  
This Lagrangian has local gauge symmetry. The extra terms correspond to an 
interaction between the "photon" = gauge particle field and the original particles. 
Actually the first extra term in the Lagrangian corresponds to vertices like 

  and the last term to  
 
The parameter q corresponds to the coupling strength. We can also introduce an extra 
(gauge invariant) term in the Lagrangian that will generate a Klein-Gordon equation 
for the "photon" and we recover a kind of Maxwell's equations. However if we also 
try to give the "photon" a mass, which can be done by adding a term  M

2AµAµ , it is 
impossible to get a gauge invariant Lagrangian.  
 
Here we did the gauge transformation calculations for a scalar field in order to 
somewhat simplify the mathematics. However, if we repeat the game with the spinor 
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fields of the electron and positron we get exactly the correct QED interaction, we 
don't get diagrams like the last one above. We also recover Maxwell equations. 
 
The important points of this are: 
1) With only electrons and positrons we cannot construct a local gauge invariant 
theory. 
2) We need to introduce also a vector field  Aµ  that can be identified with the photon. 
3) The particle corresponding to this vector field must be massless. 
4) The gauge symmetry gives us exactly the correct form of the interaction. 
5) It can be shown that the resulting theory is renormalisable. 
 
The marvellous thing is that we can now extend these ideas to the weak and strong 
interactions. 
 
We start with the weak interaction. Suppose that we want to have the freedom to label 
the up and down quarks as we like (or the neutrino and electron). We denote the 
corresponding fields by u and d. It turns out that we need a slightly more complex 
gauge transformation. We will have to introduce three vector bosons, W1, W2, W3. The 
fundamental interaction term will look like 

 
  

g· u d( )
k=1

3

∑ σ kWk
u
d

⎛
⎝⎜

⎞
⎠⎟

 where we have repressed Lorentz indices. 

Observe that we now have a matrix of fields. The quantities  σ k  are (not very 
surprisingly) the Pauli matrices connected with the group SU(2) 
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If we insert these matrices we get 
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or  
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d
u
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or 

 
  
g
2

ud + du( )W1 + i −ud + du( )W2 + uu− dd( )W3⎡⎣ ⎤⎦  

Rearranging 

 
  

g
2

ud 1
2

W1 − iW2( ) + g
2

du 1
2

W1 + iW2( ) + g
2

uu− dd( )W3  

Finally we make the identification with the real vector bosons 

  
  
W + = 1

2
W1 − iW2( ) W − = 1

2
W1 + iW2( ) W 0 = W3  

to get 
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g
2

udW + + g
2

duW − + g
2

uu− dd( )W 0  

As you see this gives an explanation of the earlier maybe puzzling coefficients   

 1/ 2  and 1/2 in the electroweak model. Besides, there will be interaction terms in 
the Lagrangian that correspond to a WWW and a WWWW interaction vertex. Because 
of the non-linearity of the equations the coupling constant g must have a fixed (but 
unknown) value. Observe that the gauge bosons W must fundamentally be massless 
and we need the Higgs mechanism to generate their mass. 
 
Finally we outline how the gauge symmetry gives the strong interaction. Here we 
want to be able to put the colour labels R, G, and B as we want. We will then have to 
introduce eight vector boson fields, Gk, k = 1..8, the gluons: 

 

  

gs qR qG qB( )
k=1

8

∑ TkGk
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Tk are 3 x 3 SU(3) matrices and gs is the fundamental strong coupling constant. This 
expression will completely describe the couplings between the quarks and the gluons. 
As in the weak interaction there will also be interaction terms corresponding to GGG 
and GGGG interactions. 
 
Is it possible by using gauge symmetry in some higher dimension to unify all the 
interactions? In such gauge theories there appear a lot of new gauge bosons that we 
have to assume to have very large masses (by some Higgs mechanism) as they have 
not yet been seen experimentally. In such theories it would also be possible for 
leptons to transform into quarks and vice versa and the proton would be unstable. The 
simplest of these enlarged symmetries predict that the lifetime of the proton would be 
of the order 1031 years. Experiments have, however, shown that this lifetime is at least 
1032 years. 
 

Exercise: Use a simple argument to deduce that the lifetime of the proton must be 
quite large. You can actually very easily estimate a lower limit for it! Hint: Your body 
contains a lot of protons. 
 
Another rather attractive theory that unifies the forces is called supersymmetry. Here 
you assume that each half-integer spin particle has a partner that has integer spin and 
vice versa. The partner of the electron is called the selectron (with the same charge 
and couplings), the squarks are the partners of the quarks, the sneutrinos to the 
neutrinos. Corresponding to the photon there is a half integer spin photino, to the W:s 
and Z the winos and the zino. No supersymmetric partners have so far been seen 
experimentally but supersymmetric particles have been suggested as candidates for 
the "dark mass" in the universe. 
There are also the string theories that in a very elegant way include also the 
gravitation among the forces. Some results of this theory are quite promising; the 
problem is that so far the theory has not been able to give predictions that can be 
tested experimentally. 
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Chapter 7. The Big Bang 
 
If we study spectral lines from distant galaxies we 
find (in average) that these lines are displaced toward 
the red end of the spectrum. This can be interpreted 
as if the galaxies are moving away from us. Their 
speeds turn out to be proportional the distance from 
us. This is Hubble 's law and according to latest 
measurements, the constant of proportionality, 
Hubble 's parameter has a present value close to 70 
km/s /Mpc. The figure to the right shows some 
observational data. (Note that Hubble's parameter is 
not a physical constant in the normal sense. It is a 
property of the Universe that varies with time.) 
 
1 ly (lightyear) is equal to 0.307 pc (parsec) where 1 
pc is the distance to an object that will have a parallax of 
1 arc second (1 / 3600 of a degree) with the radius of the 
earth's orbit as a base line. 
 
Expressed in metrical units 1 pc = 3.086·1016 m.  
1 ly = 9.460·1015 m. 
The fact that the speed is proportional to the distance can 
be interpreted as an expansion of the entire universe and 
from Hubble's law we can make a crude estimate of the 
start of the expansion. We have 
   v = H0r  
where v is the speed, H0 the present value of Hubble’s parameter and r the distance. 
If we write the expression above in the form   r = v/H0 , we see that it is formally the 
same as for the distance covered with a constant speed during the time interval 1/ H 0 . 
The time 1/H0 will then be an estimate of the time since the expansion began. 
 
Inserting the numerical value of Hubble’s parameter we get the Hubble time 

  tH = 1/H0 ≈ 4.4·1017 s ≈ 15·109  years. The estimate is crude because, as we 
will see later, neither the Hubble parameter nor the expansion speed is constant. 
 
We can actually have a two-dimensional picture of the expansion by imagining the 
galaxies as patches on a rubber balloon that we inflate. It is then easy to see that two 
patches will move away from each other with a speed that is precisely proportional to 
the distance between the patches. Our discussion indicates that the expansion started 
with what is called the Big Bang, an event that happened about 10 000-15 000 million 
years ago. Note that our discussion does not say anything about the question whether 
the universe is finite or infinite. 
 
We also note that the expansion will look the same from any of the patches on the 
balloon, something which indicates that the universe is homogeneous (the same in 
every point) and isotropic (the same in every direction). This assumption is called the 
cosmological principle. 
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We will now investigate the Hubble expansion in more detail. We will use Newtonian 
mechanics. This is actually not correct but will give essentially correct results since 
we choose equations of a form that we know look the same in general relativity. 
We start by looking what happens when we throw a stone from the surface of the 
earth upwards in the gravitational field of the earth. As we increase the initial speed of 
the stone it will go higher and higher before it turns and falls back. With a sufficiently 
high initial velocity, the stone will never fall back. 
 
We use the law of energy conservation 

 
  
mvi
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R
=

mv2
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Here m is the mass of the stone, vi its initial speed, v its final speed, r its final distance 
from the earth centre, M the mass of the earth, R the radius of the earth. G is the 
universal gravitational constant. Rearranging we find 
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The critical initial speed, the escape speed, will be reached when  r →∞  and   v → 0
that gives 
   vesc = 2GM/R  
Now we use that a particle on the surface of a homogeneous massive sphere will feel 
a gravitational force as if the mass M inside the sphere was concentrated in the centre 
of the sphere. Now imagine a sphere with radius R0 in the universe and a galaxy on 
the surface of this sphere. Using the same reasoning as before we can calculate the 
escape speed 

 
  
vesc ,0 = 2GM/R0 = R0

8π
3

Gρ0  

where we have introduced the present density  ρ0 of the universe. But by Hubble’s law 
the speed of the galaxy at the surface of the sphere is 
   v0 = H0R0  
So if   v0 > vesc the universe will expand forever while if   v0 < vesc it will collapse in the 
Big Crunch. The limiting case is when 

 
  
R0

8π
3

Gρ0 = H0R0  

or 

 
  
H0 =

8π
3

Gρ0  or 
  
ρ0 =

3H0
2

8πG
 

Inserting numbers we get a critical density of about 10–26 kg / m3 which corresponds 
to about six protons per cubic meter. If the density of the universe is larger than this, 
the universe will collapse, if not, it will expand forever. 
 
Our Newtonian approach gives the correct result but is logically faulty. If we had used 
say another sphere that was touching the original sphere at the location of the galaxy, 
the gravitational force would apparently have pointed in the opposite direction! 
However, in Einstein’s theory of general relativity it is possible to derive what is 
called Birkhoff’s theorem that says that a galaxy on the surface of a sphere in a 
homogeneous universe will be influenced only by the mass inside the sphere, 
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irrespectively of how the sphere is chosen. Which means that we can neglect 
everything in the rest of the universe that is outside this sphere. 
 
We derived our results above for the present universe. But it must of course be valid 
for any time t. This means we have 

 
  
ρcritical t( ) = 3H 2 t( )

8πG
 

We now define the density parameter 

 
  
Ω t( ) = ρ t( )

ρcritical t( ) =
8πGρ t( )
3H 2 t( )  

A density parameter that is less than or equal to 1 then means eternal expansion, a 
density parameter larger than 1 means collapse. 
 
Using the measured value of the present Hubble parameter and estimating the present 
mass density in the universe, we can calculate the density parameter. It then turns out 
that the visible matter in the galaxies will only give Ω  = 0.01. As we will see later on 
we know that there is quite a lot of invisible ordinary matter in the galaxies. This 
invisible normal matter can be estimated to increaseΩ  to about 0.05. Studies of the 
rotational speeds of stars in galaxies indicate that there is still more so called dark 
matter (see chapter9). Still the density parameter will only be of the order of 0.3. As 
we will soon see, there are reasons to believe that the density parameter is precisely 
equal to 1. This means that either there must be about 3 times as much mass or energy 
again in the form of "cosmic dark matter", invisible and of unknown composition. 
Another way to save the situation is to introduce the cosmological constant, more 
about that in the last section of this chapter. 
 
Details of the Big Bang 
 
From the earlier discussion the can write the equation for the radial speed of a galaxy 
on the surface of a sphere with radius R as 

 
  
v2 − 2GM

R
= constant  

The constant obviously has the dimension of velocity squared and we write 

 
  
v2 − GM

R
= k·c2  

where c is the speed of light and k is a dimensionless constant. From our earlier 
results we then have 

  
  

dR
dt

⎛
⎝⎜

⎞
⎠⎟

2

−
8πGR2ρ t( )

3
= H t( )R t( )( )2 1−Ω t( )⎡⎣ ⎤⎦ = −k·c2  

We note that for a critical density parameter Ω  =1, we obviously have k = 0 which in 
turn means that the total energy at the surface of the sphere is zero. But this is valid 
for any size of the sphere which implies that the total energy of the universe is zero 
for critical density. Rewriting the equation we have 

 
  
dR
dt

= ± 2GM
R

− kc2  

We know empirically that our universe expands and choose the positive root. If the 
value of k is negative, the expression inside the root sign is always positive, the 
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expansion speed is then always positive and R will increase forever although by time 
in a slower pace. If k = 0 the expansion speed will go to zero as R goes to infinity. But 
if k < 0 there will be a finite value of R where the expansion speed is zero, we then 
have to choose the negative sign of the root to study the further development. 
Graphically we can picture the development with time like this 

  
In general relativity a universe with k < 0 is open (in two space dimensions it would 
correspond to a saddle surface), and a universe with k > 0 is closed (corresponding to 
a sphere in two dimensions). The special case where k = 0 is called a flat universe, (in 
two dimensions corresponding to a plane). 
 
Note that in the beginning all the curves are very close to each other. If we assume 
that the present universe is not too far from the origin of the Big Bang, we can 
consider only the situation k = 0 and have 

 
  
dR
dt

= 2GM
R

    or 
  
R1/2 dR

dt
= 2GM  

or 
  
R = 3

2
2GM⎛

⎝⎜
⎞
⎠⎟

2/3

t2/3 ∝ t2/3  where we have assumed R(t = 0) = 0. 

 
If we now use that   M = 4πR3ρ/3 we get after some rearrangement 

 
  
t = 2

3
3

8πG
ρ−1/2  

This is a "cosmic clock", by measuring the density of the universe we can calculate 
the age of the universe. The present age of the universe can be calculated by inserting 
the present density 

 
  
t0 =

2
3

3
8πG

ρ0
−1/2 = 2

3H0

3H0
2

8πGρ0
= 2

3H0

1
Ω0

 

Assuming that our universe is critical and inserting numerical values we get 

 
  
t0 =

2
3

tH ≈ 1010 years. 

This is actually a little too small as the astronomers have found stars that seem to be 
older than this. We will return to this problem later on. 
 
Here we also note that from 

 
  

H t( )R t( )( )2
1−Ω t( )⎡⎣ ⎤⎦ = −k·c2 = constan  

we have 
   H t( )R t( )( )2 1−Ω t( )⎡⎣ ⎤⎦ = H0R0( )2 1−Ω0⎡⎣ ⎤⎦  
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But as   R ∝ t2/3 we must have 
  
v = dR

dt
∝ t−1/3  that gives 

 
  
Ω t( )−1 = Ω0 −1 t

t0

⎛
⎝⎜

⎞
⎠⎟

2/3

 

Now assume that today  Ω0  = 0.1. Today we have  t0 = 3·1017 s . Let us calculate the 
density parameter 1 s after the Big Bang. We then have 

 
  
Ω t( )−1 = 0.1−1 1

3·1017 s
⎛
⎝⎜

⎞
⎠⎟

2/3

≈ 10−11  

At that time the density parameter must have been extremely close to 1!! It is very 
difficult to understand how Nature could make the density parameter that close (but 
not equal to) 1. A natural assumption is to say that it is exactly equal to 1. In that case, 
the constant k = 0 and the density parameter will always be equal to 1. It is then a 
natural question to ask how the density parameter became exactly equal to 1. We will 
see how to solve that problem in a later chapter. 
 
Radiation in the universe 
 
Our derivation above is not complete. Electromagnetic radiation contains energy and 
thus by Einstein contributes to the mass inside the sphere. The equivalent mass of the 
radiation is given by 
   Mrad = Erad /c2  
We therefore suspect, and this is confirmed by the theory of general relativity, that the 
mass of the sphere must be redefined as 
   M R( ) = Mmatter R( ) + Mrad  
As the sphere expands the amount of matter doesn't change but this is not true for the 
mass coming from radiation.  
 
Our first interpretation of the displacement of the spectral lines of distant galaxies was 
that they actually moved through space with a certain speed. This, however, is not 
correct. The correct interpretation is that we see the galaxies recede from us because 
space itself expands. We don't observe this inside the galaxies, because gravitation 
will keep matter together. If we compare this with our expanding balloon, we could 
say that the galaxies are spots of glue on the surface of the balloon and when we 
inflate the balloon the area between the spots expands while the spots keep the same 
size. Now imagine a light wave drawn as a wavy line on the balloon. As the balloon 
inflates the wavelength will obviously increase, the light will be more red. This is the 
correct interpretation of the "Doppler” shift of the spectra. This immediately tells us 
that the wavelength λ of the light 
is proportional to R. So 

 
  
R ∝λ = c/ f = hc

hf
∝1/E    or     E ∝1/R  

This means that when the universe was small, in its early evolution, the contribution 
to its mass was radiation dominated. We call this the radiation dominated era. We 
can redo our calculations for this case. We have 
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dR
dt

= 2GM
R

− kc2 = 2GE
c2R

− kc2 = 2GK
c2R2 − kc2  

where K is some proportionality constant. Assuming as before that k = 0 we get 

 
  
dR
dt

= 2GK
c2R2   or  

  
R dR

dt
= 2GK

c2   or    R = 8GK/c2( )1/4
t1/2   or    R ∝ t1/2  

 
For the cosmic clock we get 

 
  
t = 1

2
R2

2GK/c2
= 1

2
R3/2

2GK/Rc2
= 1

2
R3/2

2GMrad

= 1
2

3
8πG

ρ−1/2  

The density means the equivalent radiation mass per volume. We see that the time 
still has the same functional dependence on the density as before but that the "size" of 
the universe now is proportional to the square root of time. 
 
The cosmic background radiation 
 
In the beginning the radiation was in thermal equilibrium with the matter: the photons 
interacted with free charged electric particles like protons and electrons. As long as 
this happened the average energy of the photons was equal to the average particle 
energy. But as the universe expanded, the energy of the photons and particles 
decreased and at some time the electrons and protons combined to form neutral atoms. 
  
At that time the radiation more or less stopped interacting with matter, the interaction 
cross-section for photons and atoms is very small (see chapter 3 on the Compton 
scattering). We can actually estimate when this happened. Typically ionisation 
energies are of the order of 1 eV. Using a somewhat more detailed calculation it can 
be shown that neutral atoms were created when the temperature of the radiation 
(and the particles) were about 4000 K. The electromagnetic radiation in the universe 
is blackbody radiation and we have (by Planck's law) a precise relation between the 
(mass equivalent) energy density of the radiation and its temperature 

 
  
ρc2 = 4

c
σ SBT

4  

where  σ SB  is the constant in Stefan-Boltzmann's law. Inserting this in our equation 
above gives us 

 
  
t = 1

2
3c2

32πGσ SB
T−2 ∝T−2  

If we use the value T = 4000 K we find a time  t free  = 500 000 years. In this 
computation we have assumed that the universe was radiation dominated up to this 
point which we will justify in a moment. After this moment, the radiation will stop 
interacting with matter in the universe and will lose energy only due to the expansion, 
we have   Erad ∝R−1 and  Erad ∝Trad , thus   Trad ∝R−1 . (Matter and radiation will now not 
necessarily have the same temperature as they are not in thermal contact.) We can 
then calculate the present temperature of the radiation 

 
  
T0 = Tfree

Rfree

R0
= Tfree

t free

t0

⎛

⎝⎜
⎞

⎠⎟

2/3

= 4000 5·105

1010
⎛
⎝⎜

⎞
⎠⎟

2/3

≈ 5 K  
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This is remarkably close to the measured value 2.726 K of the temperature of the 
cosmic background radiation, first discovered by Arno Penzias and Robert Wilson in 
1964. The equivalent mass density of the radiation today is about 4.5·10–31 kg / m3, 
about 1/1000 of the matter density. At the time where the radiation stopped 
interacting with matter the equivalent radiation mass density was 2·10–18 kg / m3 
while the matter density was about 4·10–18 kg / m3, almost the same. By a strange 
coincidence the time when the radiation got free (the universe became transparent for 
light) also the universe changed from being radiation dominated to be matter 
dominated. 
 
The spectrum of the background radiation closely conforms with a Planck law 
blackbody radiation of 2.726 K. See the attached figure with measured data. 

 
 
The cosmological constant 
 
We remarked earlier that the present age of the universe was uncomfortably close to 
the age of the oldest stars. Also we had problems with that the amount of matter was 
not enough to make the universe critical. One way of curing our model of the universe 
is to introduce a constant vacuum matter (energy·c2) density Λ . If we then include all 
kinds of mass/energy in our original equation of motion we have 

 
  
v2 − 2G

R
4
3πρmatterR

3 + 4
3πρradR

3 + 4
3πρvacR

3( ) = −kc2  

We know that the radiation density is proportional to   T 4 ∝R−4 and is important only 
in the radiation dominated era. If the vacuum energy density is constant the 
corresponding term in the expression above can be neglected in the early development 
of the universe but will be dominant in the later phase of the development. If we look 
at our present universe and neglect the radiation term we have 

 
  
v2 − 2G

R
4
3πρmatterR

3 + 4
3πρvacR

3( ) = −kc2 = HR( )2 1−Ωmatter −
Λ

3H 2
⎛
⎝⎜

⎞
⎠⎟

 

where   Λ = 8πGρvac  is the so called cosmological constant. You will then see that we 
have an "effective" density parameter of 

 
  
Ωeffective = Ωmatter +

Λ
3H 2 = Ωmatter +ΩΛ  
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This means that we can have a flat space ( Ωeffetive =1) without having  Ωmatter =1 
We also then have 

 
  
dR
dt

= 2GM
R

+ 1
3 ΛR2 − kc2  

We can now have a multitude of different possible 
universa. For instance if we choose k = 0, we see 
that for small R, the universe will behave as the 
earlier critical universe but for large R the second 
term in the root will dominate and give an 
expanding universe. The "size" of the universe 
could then develop as the sketch shows 
 
If we then live in the later phase of the development, the universe could be much 
older than tH. Some of the results are summarized in the table below 

 
In 1999 observational situation can be summarized as 
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The most recent observations indicate that we live in a flat universe with  Ωmatter = 0.1 
and  Ωmatter = 0.9. 
 
There are theoretical arguments for the existence of a cosmological constant. 
According to quantum mechanics there should be a zero point energy due to the 
creation of virtual particle-antiparticle pairs in the vacuum. The concept of this 
vacuum energy has was been experimentally confirmed in1996 through the Casimir 
effect where two uncharged conducting plates attract each other due to vacuum 
fluctuations. 
 
We can estimate the vacuum energy by considering spinless particles that can be 
represented by a collection of harmonic oscillators. The zero point energy of a 
harmonic oscillator is given by  !ω/2 . 
If we sum all the possible frequencies we get 

 
   
E0 =

!ω
2ω

∑  

We can convert the sum to an integral over the density of states in a volume V. 

 
   
E0 =

V
2π( )3

!ω
2∫ d3k = V

2π( )3 4π !ω
2c3

0

ωmax

∫ ω 2dω =
V !ωmax( )4

16π 2c3!3  

The upper limit of the integration can be taken as the Planck energy, 1.2·1019GeV, 
because we guess that our ordinary physics should be more or less valid up to this 
point. This gives us an extra equivalent mass density of 

 
   
ρvac =

E0

V
· 1
c2 =

EPlanck
4

16π 2c5!3  

This would result in 

 
  
ΩΛ =

8πGρvac

3H0
2 ≈ 10120  

This is in extreme (!!) conflict with the observed values above. It could be that if we - 
include the contribution of all the particles in the standard model that by some miracle 
the contributions would more or less cancel to give the observed value. 
 
Review: 
Give some observational facts that support the Big Bang idea. Define the critical 
density. Define the density parameter. Derive the functional dependence of the size of 
the universe as a function of time in a critical universe (both matter and radiation 
dominated). Derive the "cosmic clock”. Show that the density parameter must have 
been very close to 1 close to the Big Bang. Show that our theory predicts a present 
cosmic background radiation temperature of some Kelvins. Why is a cosmological 
constant an interesting addition to the Big Bang theory? 
 
Problems: 
1. What is the time elapsed from the Big Bang until the tauons annihilated? (2·10–7 s) 
Hint: After 500 000 years when the radiation was released, the temperature of the 
universe was 4000 K. 
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2. Start from the following facts: 
The photon density (number density) in our present universe is 108 m–3. 
The nucleon density in our present universe is 1 m–3. The Hubble parameter is  
75 km/s /Mpc. The neutrinos in the universe were released when the universe became 
"transparent" to them i.e. when their mean free path was of the same order of 
magnitude as the size of the universe. This happened some seconds after Big Bang 
when the temperature of the universe was about 5·109 K. Before the release, the 
neutrinos were in thermal equilibrium with other particles. After the release the 
temperature of the neutrinos decrease as the size of the universe increases, 
independent of the other kinds of particles. Assume that the present value of the 
density parameter Ω = 1 i. e has the critical value. Furthermore, assume that the 
"missing mass" can be explained by that the neutrinos have a mass. What 
approximate value does this model give for the sum of the masses of the three kinds 
of neutrinos: ( mνe + mνµ + mντ )·c2? Give the answer using the unit electron volts. (10 – 
100 eV) Hint: First show that the present number density of neutrinos is of the order 
of 108m–3, the same as the present number density of photons. 
 
3. As the universe had cooled such that the electrons and atomic nuclei had formed 
neutral atoms the universe became transparent. Light with different wave-lengths: 
radio waves, visible light, X-rays and photons with still higher energies (maximal 
observed energy is 70 TeV) can be used to study objects as far away as several 
billions of light-years. As the universe contains a lot of photons, this would not have 
been possible had the cross-section of γγ →γγ not been very small for normal (small) 
photon energies. At very high energies other reactions like  γγ → X are possible. 
a) What final state should be easiest to produce in the latter reaction? (e+e–) 
b) Draw a Feynman diagrams for this process. (If you don't know the answer of part 
a), draw a diagram for some other possible final state and use it for the following 
questions) 
c) Study this reaction in the system in the COM frame of the photons is. Determine 
the smallest possible energy E0 for the reaction to be possible? (  E0 = 2mec

2 ) 
d) Estimate the order of magnitude of the cross section 0' of the process. Assume that 
the energy is of the same order of magnitude as the minimal energy E0. Use 

dimensional analysis and that the dimensionless parameter    α = e2 / 4πε0!c( )
=1/l37.(10–30 m2 ) 
e) What is the energy of the photons in the cosmic background radiation? What 
energy does a high-energy photon need to interact with the background radiation in 
the reaction above? (1015 eV ) 
f) What is the mean free path for high-energy photons expressed in the cross section 
σ and number density  nγ ny of background photons per volume? What is the 
approximate value of  nγ ? Use this and the cross section estimated above to discuss 
how this could influence the observation of very distant galaxies. (1022 m) 
g) There are also a great number of low-energy neutrinos in the universe. Draw a 
Feynman diagram for a possible reaction process between a neutrino and a high-
energy photon. Can this reaction be neglected compared with the γγ  reaction above 
and if so, why? (σ = l0–11σγγ ) Hint: What would be the minimum necessary energy 
for this process in the C.O.M system? Use this and dimensional analysis. 
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Chapter 8. The evolution of the universe 
 
We can compute the number density of photons in the universe using the Planck 
distribution. It is given by 

 
   
nγ = 2.404 kT

πc!
⎛
⎝⎜

⎞
⎠⎟

3

 

Inserting the temperature of the present universe we get the present number 

  nγ ,0 = 1.3·108 m–3. We can compare this with the number density of matter, about one 
nucleon per cubic meter. The ratio between the number of photons and nucleons is 
thus about 108. However, if we look at the distribution of energy, the present photons 
have typically an energy of kT =10–4 eV, while a typical nucleon mass corresponds to 
1 GeV. This means that the energy ratio between photons and nucleons is 

 
 
108·10−4

1·109 = 10.−5  

We live now in the matter dominated era. 
 
We know that in a matter dominated universe we have  R ∝ t2/3 . Further the matter 
mass density is proportional to  R−3 , i.e.  ρm ∝ t−3 . The radiation equivalent mass 
density is proportional to T4, and as   T ∝R−1 we have   ρr ∝R−4 ∝ t−8/3 . 
 
In the radiation dominated universe the change is that   R ∝ t1/2 . This gives for the 
matter mass density  ρm ∝ t−3/2 , while the radiation equivalent mass density becomes 

  ρr ∝R−4 ∝ t−2 . 
 
We illustrate these relations with the following diagrams 

  
The dotted vertical line marks the borderline between the radiation dominated and 
matter dominated universe at about t = 500 000 years. 
 
Travelling back to the past 
 
We start today and go back in time toward the Big Bang itself. 
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Today  
t=1.2·1010 years = 4·1017s T = 2.726 K   ρm = 10−27  kg/m3  ρr =10–32 kg/m3 

 
Room temperature universe 
t=1.2·107 years = 4·1014s T  = 300 K    ρm = 10−21  kg/m3   ρr =10–24 kg/m3 

 
The borderline to the radiation dominated universe 
t=5·105 years = 1013s  T = 4000 K    ρm = 10−17  kg/m3   ρr =10–17 kg/m3 

 
The leptonic era, we now produce lots of electrons, muons, and neutrinos 
t=1 s   T = 1010 K  E=1 MeV    ρm = 102     ρr =108 kg/m3 

 
The quark era, we now have free quarks 
t=10–5 s  T = 1012 K  E=300 MeV   

 
W, Z in thermal equilibrium with other particles 
t=10–10 s  T = 1015 K  E=100 GeV 
 
Electromagnetic, weak and strong interactions unite(?) 
t=10–36 s  T = 1028 K  E=1015 GeV 
 
The Planck time, we need a quantum theory for gravitation to continue. 
t=10–43 s  T = 1032 K  E=1019 GeV  ρ = 1096  kg/m3 
 
 
Some problems with the simple Big Bang: the horizon problem and the 
flatness problem 
 
We will first address the horizon problem. The problem is that the visible universe 
grows faster than the expansion of the universe. As time goes by, we will be able to 
see a larger and larger portion of the universe. 
 
To understand this problem we consider a one-dimensional "rubber" universe. We 
assume that we have a rubber band with markings and that this rubber band is 
stretched. The distance between two markings at time t is R(t). We assume that time 
increases in discrete steps. We further assume that a worm is crawling from one end 
of the band to the other with speed c. To simplify the procedure, we assume that at 
each tick of the clock the rubber band is stretched, the worm takes a step  c·Δt . 
 
At time  Δt the distance between two markings is  R Δt( )and the worm takes a step

  c·Δt . At the next tick of the clock the distance between the markings is  R 2Δt( ) , i.e. 

the rubber band has elongated by a factor  R 2Δt( )/R Δt( ) and thereby also the first 
step of the worm. After a new step of the worm it has consequently travelled a 
distance 
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s 2Δt( ) = R 2Δt( )

R Δt( ) c·Δt + c·Δt  

After the next step the worm has travelled 

 

  

s 3Δt( ) = R 3Δt( )
R 2Δt( )

R 2Δt( )
R Δt( ) c·Δt + c·Δt

⎛

⎝⎜
⎞

⎠⎟
+ c·Δt =

R 3Δt( )c·Δt 1
R Δt( ) +

1
R 2Δt( ) +

1
R 3Δt( )

⎛

⎝⎜
⎞

⎠⎟

 

After N steps we then have 

 
  
s NΔt( ) = R NΔt( ) cΔt

R nΔt( )n=1

N

∑ →
Δt→0

R t( ) cd ′t
R ′t( )0

t

∫  

For a radiation dominated universe we have   R t( ) = k·t1/2 that gives 

 
  
s t( ) = ct1/2 d ′t

t1/2
0

t

∫ = 2ct  

For a matter dominated universe with   R t( ) = ′k ·t2/3 we get s(t) = 3ct. 
In both cases the distance that a light ray travels is proportional to t. But the size of 
the universe only grows as   t1/2 or   t2/3 . The visible universe grows faster than the 
expansion. All the time we will see new parts of the universe that have never been in 
contact with ”our” universe. But still we observe that the cosmic background radiation 
is extremely isotropic and has the same temperature in every direction and from any 
part of the universe. This is highly astonishing, like discovering a planet that has 
never had any contact with the earth but looks identical! 
 
Our second problem with the simple Big Bang is the flatness of the universe. How can 
the density parameter be so closely tuned to be almost exactly 1? 
 
It turns out that both these problems can be solved by the idea of inflation. 
 
Inflation 
 
Let us for a moment go back to our equation of motion for the universe in chapter 7: 

 
  
dR
dt

=
8πGρ t( )

3
R t( )  

Suppose now that for some reason the energy density is constant. We then have the 
equation  

 
  
dR
dt

=
8πGρconst

3
R t( )  

that has exponentially an growing solution: 

   R t( ) = Rie
8πGρconst

3
t−ti( )

 
If the constant density is large enough, the universe will be ”inflated" tremendously in 
a very short time. This solves the horizon problem: a small part of the universe is 
inflated to be ”our” part of the universe, the parts outside were before the inflation in 
contact with us and it is not strange that when they again become part of the visible 
universe they are in thermal equilibrium with "us”. The inflation also solves the 
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flatness problem: whatever the curvature the original universe had, it will look flat 
when inflated say by a factor of 1030. 
 
What could cause the energy density to become constant? It turns out that a Higgs 
medium for the Grand Unified Theory of elementary particles can deliver the 
necessary energy when the medium exhibits a spontaneous breakdown of symmetry. 
This is very much like what happens when water freezes, there is a phase transition, 
and as the water freezes it delivers melting heat. 
 
In the "standard" Big Bang the inflation happened at about t = 10–32 s and lasted about 
10–31 s. 
 
Nucleon and primary nuclear synthesis 
 
When quarks and antiquarks combined into nucleons in the nucleon synthesis there 
must have been a slight excess of quarks as all the matter we see today is built from 
quarks. We can compute the necessary excess as there are three quarks in a nucleon. 
If the number of nucleons today is   N0 we then have 

 
  
N0 = 1

3 Nq − Nq( )  

On the other hand at the time of the nucleon synthesis, the number of quarks and anti- 
quarks must have been about the same as the number of photons that is the same as 
the number of photons today 
   N0,γ ≈ Nq ≈ Nq  
Question: Why is the number of photons then the same as today? Hint: How does the 
photon number density depend on R? 
This means that 

 
  

Nq − Nq

Nq + Nq
=

3N0

2N0,γ
≈ 10−8  

In some weak interaction reactions that we study today there are examples that show 
that there is a slight asymmetry between the reaction probabilities of particles and 
anti-particles. Similar asymmetries in Grand Unifies Theories combined with inflation 
would allow a slight excess of matter in an originally equal mixture of particles and 
anti-particles. 
 
At the end of the leptonic era (t = 1 s), when the typical energy is about 1 MeV  
(T = 1010 K) it began to be important that the neutron is slightly heavier than the 
proton. Up till now neutrons and protons had been freely converted into each other by 
collisions with electrons, positrons and neutrinos. But now it became a little more 
difficult to produce neutrons than protons. We can estimate the ratio of the numbers of 
neutrons and protons by using the Boltzmann factor 

 
  
r = Nn

Np
= e−mnc2/kT

e−mpc2/kT
= e− mn−mp( )c2/kT  

Inserting numbers we find r ≈ 0.27. This number has to be adjusted for the fact that 
the neutron has a finite lifetime (about 10 minutes) and taking this into account will 
give r  ≈ 0.14. 
 
Precisely at this time the energy has decreased such that neutrons and protons can 
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start to form deuterium nuclei. The binding energy of a deuterium nucleus is 2.2 MeV, 
and earlier the energy was high enough to tear the nucleons apart as soon as they 
united. Once the deuteron nuclei have formed they can rapidly capture more neutrons 
and protons or directly unite two and two to helium. At t = 200 s, all existing neutrons 
would be locked up in helium-4 nuclei, the remaining nucleons are all protons. We 
can now easily calculate the fraction of nucleons ending up in a helium-4 nucleus. We 
have 
   Nn = 2NHe Np = 2NHe + NH  

This gives   NHe = Nn /2 = 0.07Np NH = Np − 2NHe = 0.86Np  

and the fraction 
  

4NHe

Np + Nn

= 4·0.07
1.14

= 25%  

  
It is a very strong support for the Big Bang theory that this is the value we observe in 
the universe. 
 
Galaxy formation 
 
At about t = 500 000 years the helium and hydrogen nuclei were able to form 
electrically neutral atoms and the universe became transparent to the photons. Small 
random matter condensations started to contract under the influence of gravitation and 
to attract nearby matter. It can be shown that during the radiation dominated era only 
condensations with masses larger than the Jeans mass will contract within reasonably 
short time. The Jeans mass during this era is given by 

 
  
MJ =

1
36π

⎛
⎝⎜

⎞
⎠⎟

1/2 c3

G3/2ρrad
1/2  

During the matter dominated era, the Jeans mass is given by 

 
  
MJ =

3
4π

⎛
⎝⎜

⎞
⎠⎟

1/2 kT
mpG

⎛

⎝
⎜

⎞

⎠
⎟

3/2
1

ρmatter
1/2  

On the other hand the photons will during the radiation dominated era try to disperse 
these mass concentrations and only masses larger than the so-called Silk mass will 
survive into the matter dominated era when the scattering effect of the photons 
disappear. The Silk mass is given by 

 
  
MS =

4π
3ρmatter

1/2

mpct
σ

⎛

⎝⎜
⎞

⎠⎟

3/2

 

where σ  is the Compton cross section that we treated in chapter 3. 
 
During the radiation dominated era the Jeans mass increased to 10 million times the 
size of a typical galaxy. No condensations of the size of a galaxy could thus form 
during this era. Entering the matter dominated era the Jeans mass suddenly decreased 
to be very small and then decreased with time. But interactions with photons during 
the radiation dominated era would destroy condensations with a mass less than the 
Silk mass. Thus only condensations with a mass larger than the Silk mass would 
survive into the matter dominated area. The Silk mass has a numerical value of about 
1014 solar masses not too remote from the mass of a typical galaxy, 1011 solar masses. 
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We should be able to see the fluctuations in the mass density reflected as fluctuations 
in the cosmic background radiation. This is exactly what has been seen recently from 
the COBE satellite. 
 
Star formation 
 
The primary galaxy cloud will further breakup in smaller condensations that 
eventually will form stars. As these condensations contract, they gain gravitational 
potential energy. You would expect that this would lead to an increase in the 
temperature of the gas cloud. However, the gas cloud that at this time consists of 
essentially hydrogen molecules has a very effective mechanism to get rid if the 
increased energy: the energy is stored as rotational energy and is then emitted as 
radiation with a wavelength of 2.8·10–5 m, for which the gas cloud is more or less 
transparent. This means that the contraction will be more or less a free fall. However, 
some of the gravitational energy will be used to split the hydrogen molecules into 
hydrogen atoms at when the radius of the future star is of the order of 1000 solar radii 
this leads to that the gas will no longer be transparent to the emitted radiation and 
starts to heat up. The gas cloud has become a proto-star. 
 
As the temperature of the protostar increases to the order of 10‘ K, corresponding to a 
mean energy of some electron volts, the atoms will be ionized. As the temperature is 
further increased different kinds of fusion reactions will start like 
  p+ p→ d + e+ +ν e  
   p+ d → 3He + γ e  
   

3He + 3He → 4He + p+ p  
The proto-star is now a star. This will happen at a temperature of about 107 K. The 
fusion will develop a lot of energy and the contraction will stop. The star is now in a 
stable equilibrium, if it contracts the temperature in the centre will increase, boosting 
the fusion that increases the pressure making the star expand again. The star is a self-
regulating fusion reactor. The lifetime of such a star will be inversely proportional to 
its mass squared, heavy stars will have a short life. Also the luminosity of the star will 
be proportional to its mass cubed. 
 
Star death 
 
For a star of the size of the sun its hydrogen fuel will last for about 10 Ga (a = annum 
= year). The centre of the star will now consist of a nucleus of helium surrounded by a 
shell of burning hydrogen. During this phase, the star inflates and becomes a red giant. 
In the central part that contracts by gravitation, the temperature increases and helium 
nuclei start to combine to 12C nuclei in a two-step reaction. The carbon nuclei can 
react again with helium nuclei and form 16O that can further react to form 20Ne. After 
about 60 Ma the central part of the star will consist mainly of carbon and oxygen. The 
outer parts have been blown out as a planetary nebula. 
 
As the helium fuel is finished, the star will contract and quantum mechanical effects 
will start to be important. The electrons in the star form a degenerate Fermi gas. 
The gravitational energy of a homogeneous sphere (the star) with radius R is inversely 
proportional to this radius and negative 
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The quantum mechanical energy of the electrons is non-relativistically inversely 
proportional to the square of the radius (Compare the quantum mechanical square 
well) and can more precisely be shown to be 

 
  
Eg = − 2GM2

5R
= − A

R
 

In the second formula we have assumed that there is one electron per hydrogen atom 
in the star, i. e. the number of electrons Ne is given by the ratio of the mass of the star 
M and the mass of the proton / neutron, mp. 

 
   
Ee =

9π
4

⎛
⎝⎜

⎞
⎠⎟

2/3

Ne
5/3 !2

2meR
2 = 9π

4
⎛
⎝⎜

⎞
⎠⎟

2/3 M
mp

⎛

⎝
⎜

⎞

⎠
⎟

5/3
!2

2meR
2 = B

R2  

Exercise: Show with a diagram sketch how the total energy depends on the radius of 
the star. Show that there is a minimum of the energy. Determine the equilibrium 
radius, and then show that it is proportional to   M−1/3 . 
 
The equilibrium radius of a star with the mass of the sun will be about 10 000 km, 
comparable to the radius of the earth. The star has become a white dwarf, a compact 
sphere of gas that behaves somewhat as a metal, i.e. has a large heat conductivity. 
Note that the gas of atomic nuclei, that have a mass that is about 2000 times the 
electron mass, is not degenerated. The white dwarf is essentially transparent to 
radiation, the degenerate electron gas cannot absorb radiation. Only a thin outer skin 
on the star is non-transparent and radiates thermal energy. The white dwarf will 
slowly cool, typical times for this cooling is 1 Ga. 
 
If a proto-star has too small mass it will contract and reach the degenerate equilibrium 
radius before the temperature gets high enough for the fusion to start. Such ”stars" are 
called brown dwarves. 
 
If the mass of the star is too high the highest electron energy levels will have 
relativistic energies. In this case we have 

 
 
Ee =

′B
R

 

i.e. this energy will only be inversely proportional to the radius. If the factor B’ is less 
than the factor A, the star electron gas will collapse. The limiting case A = B’ happens 
when the mass of the star is 

 
   
MCh =

1
6π 1/2mp

2
!c
G

⎛
⎝⎜

⎞
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3/2

 

the Chandrasekhar mass. 
 
Inserting numerical values in the formula gives  MCh = 1.4Msun . 
 
As the outer parts of the star are dispersed during the fusion, even stars with 
considerably larger mass than the Chandrasekhar mass will end up as white dwarves. 
 
If the star has considerably larger mass than the sun, the end will be more dramatic. 
As the helium fuel is used up, carbon nuclei can form magnesium and neon nuclei, a 
process that takes of the order of 100 years. The star contracts and neon and oxygen 
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will burn to silicon which takes about 1 year. The silicon will burn to still heavier 
nuclei, 56Fe, 56Co, 56Ni. But then the game is over. No more energy can be extracted 
via fusion. Now the entire central part of the star collapses which takes about 0.1 s. As 
the central part of the star has a mass that is larger than the Chandrasekhar mass, the 
collapse will continue until also the atomic nuclei form a degenerated Fermi gas. The 
collapse stops but the outer parts of the centrum will bounce and the collapse will turn 
into an explosion. In the central part of the star we still have the reaction 
  e

− + p→ n+ν e  
This will be ireversible as the neutrinos will leave the star. An enormous number of 
neutrinos will be produced (1058) and radiated during a time of about 10 s. The inner 
part of the star is transformed into a neutron star. The star dies in a supernova. The 
average energy of the neutrinos, as they escape from the star is of the order of 10 
MeV. This means that the star emits an energy of some 1047 J which is as much 
energy as the entire visible universe radiates during the same time! 
 
In the middle of an expanding gas cloud is the neutron star that can be observed as a 
pulsar. A pulsar can rotate 1000 turns a second! A neutron star with a mass equal to 
the mass of the sun will have a radius of about 10 km. In spite of the rapid rotation the 
neutron star is almost spherical.  
 
Black holes 
 
If the star mass is of the order of thirty solar masses or more, the shock wave cannot 
turn the implosion into an explosion. Then the degenerated nucleon gas will be 
relativistic and the star will collapse into a black hole with a radius that is uniquely 
determined by the mass 

 
  
R = 2GM

c2  

Review: 
Give a rough sketch of the development of the universe: time, temperature, energy, 
density, particles. What are the problems with the simple Big Bang? What is inflation 
and how does it solve these problems? In what way is the ratio helium/ hydrogen a 
support for the Big Bang theory. Sketch how galaxies form, what determines their 
size? Sketch the life of a star: different results. What is a white dwarf, a neutron star, a 
pulsar, a black hole, a supernova, a brown dwarf, Chandrasekhar mass? 
 
Problems: 
1. Compute the size of a black hole with a mass equal to the mass of the earth. 
 
2. Assume a typical pulsar with a mass equal to the mass of the sun and with a radius 
of 10 km, and a rotational period of 20 ms, i.e. 50 turns a second. A rotating body will 
have an equatorial radius  re that is larger than the polar radius  rp  because of the 
centrifugal force. This is called oblateness and is measured by the oblateness 

parameter 
 
ε =

re − rp

re
. The earth, that rotates one turn a day, has ε  = 1/300. 

a) Estimate the oblateness of the pulsar. (0.2·1 / 300 !) 
b) Estimate the rotational speed of a point on the equator, expressed in units of the 
speed of light. 
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3. Assume that the visible part of the universe only contained one galaxy, our own, 
consisting of about 1011 suns like our own (the sun is a rather good example of the 
average star). Assume that space-time is flat i. e. the density parameter is 1. What 
would then the age of our present universe be? (Of the order of 1 week!!) 
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Chapter 9. The dark matter  
 
The visible galaxy consists of stars, dust and gas that rotate around a common centre 
under the influence of gravity. Most of the mass of the galaxy is concentrated in the 
inner parts, a situation very similar to our solar system. A star with mass m at distance 
r from the centre in a spherically symmetric galaxy and orbital speed v in a circular 
orbit then has 

 
  
mv2

2
= G mM r( )

r2  or 
 
v =

GM r( )
r

 

M(r) is the mass inside the radius r. If we assume a constant mass density ρ  inside a 
radius R, being zero outside this radius we have 

 
  
v = 4πGρ

3
r r < R  

  
v = 4πGρ

3
R3/2r−1/2 r > R  

The expected rotational speed of such a galaxy as a function of the distance from the 
centre would look something like this graph 

         
The observed rotational curves look like this 

  
The full curve is the expected orbital speed taking the visible mass into account. 
Instead of decreasing, the orbital speeds remain constant or even increase slightly out 
to very large distances from the galaxy centre. The conclusion is that the galaxy 
contains enormously much more matter that what can be seen, around the central 
concentration of visible matter there must be a spherical halo of dark, invisible matter 
that stretches very far out. 
 
Assuming a constant speed  vc , as we go out to large distances, we see that this 
implies that 

 
  
M r( ) = rvc

2

G
 

Further if the halo extends to a radius R2 while the visible matter is contained within a 
radius R1, we have that the visible mass is 
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M1 =

R1vc
2

G
 

and the dark mass is roughly 

 
  
M2 =

R2vc
2

G
  or  

  

M2

M1
=

R2

R1
 

Observations indicate that the halo radius is about 30 times the galaxy radius, i.e. the 
dark mass has a mass of the order of 30 times the mass of the visible galaxy. This 
means that  Ω0 = 0.3 instead of 0.01. 
 
So what is then this dark matter? One candidate could be normal matter in brown 
dwarves and black holes. However, it turns out that the production of deuterium in the 
nuclear synthesis is very sensitive to the amount of protons and neutrons. Calculations 
done by David Schramm at the University of Chicago indicate that these candidates 
cannot contribute substantially to the density of the universe. The dark matter must be 
something else than normal matter. 
 
Another candidate would be neutrinos. Recent observations (see appendix A) indicate 
that the neutrinos can have mass, especially so the, µ and τ neutrinos. The problem 
with this kind of matter is that as it moves very fast, the masses of the condensations 
that eventually collapse must be very large. This in turn means that galaxies in such a 
model will form late, in fact too late to fit our observations. 
 
Still another candidate would be uncharged so called WIPMs (Weakly Interacting 
Massive Particles) that appear in supersymmetric particle theories: sneutrinos, fotinos, 
gluinos, zinos. The problem with them is that so far these particles have not been 
observed experimentally. Another problem with these heavy and therefore slow 
particles is that galaxy condensations collapse to easily — again in conflict with 
observations. 
 
Other possibilities are so called topological defects, structures similar to the crystal 
domains that are created when water freezes to ice. One example of such topological 
defects are magnetic monopoles, other are cosmic strings, domain walls and textures. 
However, so far there is no convincing explanation of the dark matter problem. 
 
Review: 
Why do we need dark matter? Estimate the amount of dark matter in a galaxy. 
Candidates for the dark matter: Pros and cons? 
 
Problems: 
1. In a typical galaxy the rotation speed increases with the distance from the centre of 
the galaxy but becomes constant for larger distances and of the order of magnitude 
some hundreds of km/ s.  
 
Assume that the mean density of the entire galaxy is the same as the critical density. 
Estimate the size of such a typical galaxy. You can take the Hubble parameter to be 
75 km/s/Mpc. (1 pc = 3.26 light-years). 
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2. The present Hubble parameter had (1998) an uncertainty factor that was 2. It is 
therefore often written in the form H = 100·h km /s /Mpc where h is a number 
between 0.5 and 1 and thus contain the uncertainty. 
 
If you plot the rotation speed for matter in a typical galaxy as a function of the 
distance from the centre of the galaxy, you find that the speed increases toward a 
constant values that is of the order of 200 km/ s (see earlier figure). This can be 
interpreted such that the galaxy contains matter that we cannot see. Assume that this 
rotation speed is constant out to a radius Rmax that is of the same order of magnitude as 
half the mean distance between the galaxies. The mean distance between the galaxies 
can be estimated to be 5·h–1 Mpc. 
 
a) Show that the number of galaxies per volume is 0.01·h3 Mpc–3. 
b) Compute the density parameter Ω  for the system above. (0.67) 
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Appendix A. Neutrino masses and neutrino oscillations 
 
Assume that there is a mixing between the mu and tau neutrino states. This is very 
similar to the W0-B mixing in the Standard Model. We write 

 
 

νµ = ν1 cosθ −ν2 sinθ
ντ = ν1 sinθ −ν2 cosθ

       with some mixing angle θ . 

  
We write this in matrix form that will somewhat simplify the calculations  

 
 

νµ

ντ

⎛

⎝⎜
⎞

⎠⎟
= cosθ −sinθ

sinθ cosθ
⎛
⎝⎜

⎞
⎠⎟

ν1

ν2

⎛
⎝⎜

⎞
⎠⎟

 with inverse 
 

ν1

ν2

⎛
⎝⎜

⎞
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= cosθ sinθ

−sinθ cosθ
⎛
⎝⎜

⎞
⎠⎟

νµ
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⎛

⎝⎜
⎞
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Now let the neutrinos 1 and 2 propagate with a given momentum but assume they 
have different masses. The free plane wave solutions of the Schrodinger equation are 

    ν i t( ) = ν i 0( )e
i
!

px−Et( )
i = 1,2  

or in matrix form 

 

   

ν1 t( )
ν2 t( )
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This gives immediately 
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⎠
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or 

 
   
ντ t( ) = νµ 0( )cosθ sinθ e

− i
!

E1t − e
− i
!
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⎞
⎠⎟
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skipping the space part of the wave. Taking initial conditions 
  νµ 0( ) = 1 ντ 0( ) = 0  
we have 

 
   
ντ t( ) = cosθ sinθ e

− i
!

E1t − e
− i
!

E2t⎛
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⎞
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or 

 
   
ντ t( ) = 2icosθ sinθe

− i
!

E1+E2( )t
sin

E2 −E1( )t
2!

 

Taking the modulus square give us a probavility 

 
   
ντ t( ) 2

= sin2 2θ sin2 E2 −E1( )t
!

 

Now assuming   E1 ,E2 >> m1 ,m2  we have 

  
E2 −E1 = p2c2 + m2

2c4 − p2c2 + m1
2c4 = pc 1+ m2

2c4

2p2c2 −1− m1
2c4

2p2c2
⎛
⎝⎜

⎞
⎠⎟
=
Δ m2( )c4

2pc
 

Using that E ≈ pc we arrive at 
   
ντ t( ) 2

= sin2 2θ sin2 Δ m2( )c4t
4E!
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Finally if the neutrino travels the distance L with about the speed of light c we put 
t = L / c and have our final expression for the probability that a mu neutrino will have 
changed into a tau neutrino after having travelled the distance L: 

 
   
P νµ →ντ( ) = sin2 2θ sin2 Δ m2( )c3L

4E!
 

If there is a mass difference between the electron neutrino and muon / tau neutrino we 
would also have oscillations between these neutrinos. 
  
One indication of such neutrino oscillations is that when we measure the neutrino flux 
from the sun on the earth we detect only about 1/3 of the expected number. Also it has 
long been known that the ratio of mu / electron neutrino is different if they come from 
above (when they have travelled a short distance) than if they come from below 
(when they have travelled also through the earth). As the muons are produced from 
decays of pions we have the following decay chain 
  π

− → µ− +νµ → e− +νµ +νµ +ν e  
Thus we would expect a ratio between mu neutrinos and electron neutrinos to be 2. 
In 1999 the Super-Kamiokande Collaboration reported measurements that definitely 
showed neutrino oscillations.  
 
These measurements give a value of  sin2 2θ ≈ 1and   Δ m2( ) ≈ 10−3 eV forνµ ↔ντ . 

Latest observations also support conversions  ντ ↔ν e  and with small probability also  

 νµ ↔ν e . The mass difference between the muon and electron neutrinos seems to be 
very small. 
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Appendix B. Fluctuations in the microwave background 
radiation. 
 
Recent more accurate measurements of 
the temperature fluctuations in the cosmic 
microwave radiation (se picture) give 
support for the Big Bang model and also 
gives a clear indication the density 
parameter Ω  is 1, that the universe is flat. 
   
Theory: 
The speed of sound in a photon gas is 
given by 
   v = p/ρ  
where p is the pressure and ρ the density. Further it can be shown that the pressure in 
a photon gas is given by   p = 1

3 ρc3  giving 

   v = c/ 3  
If we imagine standing sound waves in the photon-baryon medium with a wavelength 
of λ  and a period P we then have 
   λ· f = λ/P = c/ 3  
The distance between compressions in the standing wave is d = λ  / 2 . In order for 
the longest waves to have made a compression at the decoupling time td we must have 
td = P / 4. Using these facts we arrive at 
   d = 2ctd / 3  
for the largest distance between compressions (which will have a slightly higher 
temperature). This distance will have followed the general expansion in the following 
matter dominated universe and the present size will then be 
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/ 3  

The distance between an observer and the visible horizon is given   D0 = 3ct0 which 
means that the angular size of the temperature fluctuations will be 
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Inserting numbers   t0 = 13·109  years and   td = 3·105  years, about 1°. This is the same 
order of magnitude as the observed value, see graph below. 
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Combining this result with the data from distant supernovas we get a prediction for 
the matter part of the density parameter of   Ωm = 0.3  and for the vacuum density 

 ΩΛ = 0.7 . 
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Appendix C. The distance ladder 
 
One of the big problems in observational cosmology is to measure the distance to objects that 
are far away. The velocity can be measured more easily via the red-shift. 
 
The usual approach, which is the same as that developed by Hubble, is to construct a so called 
distance ladder. Relative distance measures are used to establish each "rung" of the ladder 
and calibrating these measures against each other allows one to measure distances up to the 
top of the ladder. A modern analysis might use several rungs, based on different distance 
measures. 
 
First, one exploits local kinematic distance measures to establish the length scale within the 
galaxy. Kinematic methods do not rely upon knowledge of the absolute luminosity of a 
source. Distances up to 30 pc can be derived using the trigonometric parallax of a star, i.e. the 
change in angular position of a star on the sky in the course of a year due to the earth's motion 
in space. There are several other parallaxes in addition, such that one can measure distances 
in this way up to a few hundred parsecs. 
 
Once one has determined distances of nearby stars with the kinematic method, one can then 
calculate their absolute luminosity (L) from their apparent luminosity (l) and their known 
distance (r):  L = 4πr2l . In this way it was learnt that most stars have a strict relationship 
between spectral type (a indicator of surface temperature) and absolute luminosity. With this 
method one can measure the distance of stars of known apparent luminosity and spectral type 
and in this way measure distances up to around 30 kpc.  
 
Another important class of distance indicators contain variable stars of various kinds, 
including Classical Cepheids. These are bright variable stars which have a very strict 
relationship between the period of variation P and their absolute luminosity:   logP ∝ logL . 
 
The measurement of the period of a distant Cepheid thus allows one to determine its 
distance. These stars are so bright that they can be seen in galaxies outside our own and they 
extend the distance scale up to around 4 Mpc. Other distance indicators based on novae, blue 
super-giants and red super-giants allow the ladder to be extended slightly to around 10 Mpc. 
These are called primary distance indicators. 
 
The tertiary distance indicators include the brightest cluster galaxies and supernovae. With 
the brightest galaxies one can reach distances of several hundred Mpc. Supernovae are stars 
that explode, producing a luminosity roughly equal to that of an entire galaxy. These stars are 
therefore easily seen in distant galaxies, but these indicators are not too precise. 
 
There are many more other methods to estimate the distance of galaxies that could be 
described here. If possible several methods are combined to give the smallest 
experimental error. There are new satellite projects planned, like the GAIA misson, that is 
proposed by ESA (European Space Agency) for 2010. GAIA will measure more than 109 stars 
in our galaxy and its nearest neighbours. With such future measurements almost the whole 
galaxy will have trigonometrically determined distances. 
 
You can find more about the GAIA project on http://astro.estec.esa.nl/SA- 
general/Projects/GAIA/gaia.html 
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